
CA-ADS®
User Guide

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

THIS DOCUMENTATION MAY NOT BE COPIED, TRANSFERRED, REPRODUCED, DISCLOSED, OR
DUPLICATED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN CONSENT OF CA. THIS
DOCUMENTATION IS PROPRIETARY INFORMATION OF CA AND PROTECTED BY THE COPYRIGHT
LAWS OF THE UNITED STATES AND INTERNATIONAL TREATIES.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY
LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS DOCUMENTA-
TION IS GOVERNED BY THE END USER'S APPLICABLE LICENSE AGREEMENT.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227.7013(c)(1)(ii) or applicable successor provisions.

First Edition, December 2000

 2000 Computer Associates International, Inc.
One Computer Associates Plaza, Islandia, NY 11749
All rights reserved.

All trademarks, trade names, service marks, or logos referenced herein belong to their respective companies.

 Contents

How to Use This Manual . ix

Chapter 1. Building a Prototype . 1-1
1.1 Overview . 1-3
1.2 Stage I: Building the basic prototype . 1-4

1.2.1 Compiling the application (ADSA) . 1-4
1.2.2 Compiling the maps (MAPC) . 1-5
1.2.3 Compiling the dialogs (ADSC) . 1-6
1.2.4 User review . 1-6

1.3 Stage II: Adding process logic and data retrieval 1-7
1.3.1 ADSA enhancements . 1-7
1.3.2 Populating the data dictionary (IDD) 1-8
1.3.3 MAPC enhancements . 1-8
1.3.4 ADSC enhancements . 1-8

1.4 Stage III: Refining the maps and processes 1-10

Chapter 2. Designing Maps . 2-1
2.1 Overview . 2-3
2.2 Design standards for a dialog map . 2-4
2.3 Mapping procedures . 2-5
2.4 Choosing menu maps . 2-6

2.4.1 System-defined menu maps . 2-6
2.4.2 User-defined menu maps . 2-6
2.4.3 Reformatting and recompiling the system-defined menu 2-7
2.4.4 Designing a menu/dialog . 2-8

2.5 Designing dialog maps . 2-9

Chapter 3. Designing Dialogs . 3-1
3.1 Overview . 3-3
3.2 Dialog characteristics . 3-4

3.2.1 Dialog level . 3-4
3.2.2 Dialog status . 3-5
3.2.3 Dialog control . 3-5

3.3 Design considerations . 3-7
3.3.1 Database currencies . 3-7
3.3.2 Record buffer management . 3-9
3.3.3 Database, work, and map records . 3-9
3.3.4 Logical records . 3-10
3.3.5 NEW COPY records . 3-11
3.3.6 Working storage areas . 3-11
3.3.7 Queue records . 3-11
3.3.8 Scratch records . 3-12
3.3.9 Extended run units . 3-13
3.3.10 Longterm locks . 3-14
3.3.11 Global records . 3-15

Chapter 4. Naming Conventions . 4-1

Contents iii

4.1 Overview . 4-3
4.2 Naming application entities . 4-4
4.3 Naming database information entities . 4-6

Chapter 5. Performance Considerations . 5-1
5.1 Overview . 5-3
5.2 System generation parameters . 5-4

5.2.1 Allocating primary and secondary storage pools 5-5
5.2.2 Relocating resources . 5-6
5.2.3 Specifying the number of online tasks and external request units 5-7

5.3 Resource management . 5-9
5.3.1 Monitoring tools . 5-10
5.3.2 Task processing support . 5-11
5.3.3 Variable storage pool . 5-11
5.3.4 Program pool storage . 5-12
5.3.5 Database locks . 5-12
5.3.6 Disk I/O . 5-13
5.3.7 Terminal I/O . 5-13
5.3.8 CPU usage . 5-14
5.3.9 Conserving resources . 5-14

Chapter 6. Overview of CA-ADS Application Development 6-1
6.1 Introduction . 6-3
6.2 Application development . 6-4
6.3 Application development tools . 6-7

Chapter 7. Defining an Application Structure Using ADSA 7-1
7.1 Introduction . 7-3
7.2 Overview . 7-4
7.3 Instructions . 7-8

7.3.1 Step 1: Invoke ADSA . 7-9
7.3.2 Step 2: Name the application . 7-11
7.3.3 Step 3: Specify basic information . 7-13
7.3.4 Step 4: Define application response and function relationships 7-15
7.3.5 Step 5: Further define the application responses 7-18
7.3.6 Step 6: Further define the application functions 7-22

7.3.6.1 Dialog functions . 7-24
7.3.6.2 Menu functions . 7-29

7.3.7 Step 7: Define a task code . 7-32
7.3.8 Step 8: Compile the application . 7-33
7.3.9 Exit from ADSA . 7-34
7.3.10 Optionally execute the application 7-35

7.3.10.1 Invoke the application . 7-35
7.3.10.2 Test current features . 7-36

7.4 Summary . 7-38

Chapter 8. Defining a Screen Display Using MAPC 8-1
8.1 Introduction . 8-3
8.2 Overview . 8-4
8.3 Instructions . 8-6

8.3.1 Step 1: Invoke MAPC . 8-6

iv CA-ADS User Guide

8.3.2 Step 2: Name the map . 8-7
8.3.3 Step 3: Name the records . 8-9
8.3.4 Step 4: Create the map with the autopaint facility 8-11
8.3.5 Step 5: Modify the map layout . 8-14
8.3.6 Step 6: Select fields for further definition 8-21
8.3.7 Step 7: Edit variable fields . 8-22
8.3.8 Step 8: Edit literal fields . 8-26
8.3.9 Step 9: Compile the map . 8-31
8.3.10 Exit from MAPC . 8-32
8.3.11 Optionally display the map . 8-32

8.4 Summary . 8-34

Chapter 9. Defining Dialogs Using ADSC . 9-1
9.1 Introduction . 9-3
9.2 Overview . 9-4
9.3 Instructions for defining dialogs . 9-8

9.3.1 Step 1: Invoke ADSC . 9-8
9.3.2 Step 2: Define dialog XXXDADD . 9-9
9.3.3 Step 3: Name the associated map . 9-11
9.3.4 Step 4: Create the XXXDADD dialog load module 9-13
9.3.5 Step 5: Define and compile dialog XXXDUPD 9-14
9.3.6 Exit from ADSC . 9-16

9.4 Instructions for executing the application 9-17
9.4.1 Step 1: Invoke the application . 9-17
9.4.2 Step 2: Test features of the prototype 9-18
9.4.3 Step 3: Exit from the application . 9-24

9.5 Summary . 9-26

Chapter 10. Modifying the Application Structure Using ADSA 10-1
10.1 Introduction . 10-3
10.2 Overview . 10-4
10.3 Instructions . 10-6

10.3.1 Step 1: Retrieve the application to be modified 10-6
10.3.2 Step 2: Select responses and functions 10-7
10.3.3 Step 3: Modify the EXIT response 10-8
10.3.4 Step 4: Modify the ADDDEP function 10-9
10.3.5 Step 5: Recompile the application 10-10

10.4 Exit from ADSA . 10-12
10.5 Execute the application . 10-13
10.6 Summary . 10-16

Chapter 11. Modifying a Map Using MAPC 11-1
11.1 Introduction . 11-3
11.2 Overview . 11-4
11.3 Modifying a map using MAPC . 11-6
11.4 Step 1: Retrieve the map to be modified 11-7
11.5 Step 2: Add and select map fields . 11-9
11.6 Step 3: Edit the selected fields . 11-12
11.7 Step 4: Optionally display the map layout 11-18
11.8 Step 5: Recompile the map . 11-19

Contents v

11.9 Updating modified maps in dialogs using ADSC 11-21
11.10 Step 1: Retrieve dialog XXXDADD 11-22
11.11 Step 2: Recompile dialog XXXDADD 11-24
11.12 Step 3: Retrieve and recompile dialog XXXDUPD 11-25
11.13 Executing the application . 11-27
11.14 Optionally loading the modified map 11-28
11.15 Invoking and executing the application 11-29
11.16 Summary . 11-31

Chapter 12. Adding Process Logic to a Dialog 12-1
12.1 Introduction . 12-3
12.2 Overview . 12-4
12.3 Defining process modules using IDD . 12-9

12.3.1 Step 1: Invoke the IDD menu facility 12-10
12.3.2 Step 2: Define process module XXXDADD-PREMAP 12-11
12.3.3 Step 3: Define process module XXXDADD-RESPONSE 12-16
12.3.4 Step 4: Exit from IDD . 12-20

12.4 Adding process modules to dialogs using ADSC 12-21
12.4.1 Step 1: Retrieve dialog XXXDADD 12-21
12.4.2 Step 2: Specify dialog options . 12-23
12.4.3 Step 3: Add a subschema . 12-24
12.4.4 Step 4: Add process modules . 12-28
12.4.5 Step 5: Recompile the dialog . 12-32
12.4.6 Correct errors in process modules 12-34

12.4.6.1 Display structural messages . 12-34
12.4.6.2 Display diagnostic messages . 12-35
12.4.6.3 Correct structural errors . 12-38
12.4.6.4 Correct syntax errors . 12-40
12.4.6.5 Update dialogs that use the process module 12-40

12.5 Executing the application . 12-42
12.6 Summary . 12-48

Chapter 13. Modifying Process Logic in a Dialog 13-1
13.1 Introduction . 13-3
13.2 Overview . 13-4
13.3 Modifying process modules using IDD 13-5

13.3.1 Step 1: Retrieve the process module definition 13-5
13.3.2 Step 2: Modify source statements 13-6

13.4 Updating modified process modules in dialogs using ADSC 13-10
13.4.1 Step 1: Retrieve and check out the dialog 13-10
13.4.2 Step 2: Recompile the dialog . 13-12
13.4.3 Execute the application . 13-13

13.5 Summary . 13-15

Chapter 14. Defining Work Records Using IDD 14-1
14.1 Introduction . 14-3
14.2 Overview . 14-4
14.3 Instructions . 14-6

14.3.1 Step 1: Define an element . 14-6
14.3.2 Step 2: Define a work record . 14-9
14.3.3 Step 3: Specifying basic information 14-9

vi CA-ADS User Guide

14.3.4 Adding elements . 14-11
14.4 Summary . 14-14

Chapter 15. Completing the Department Application 15-1
15.1 Introduction . 15-3
15.2 Overview . 15-4
15.3 Defining process modules using IDD . 15-7

15.3.1 Step 1: Define process module XXXDUPD-PREMAP 15-7
15.3.2 Step 2: Define process module XXXDUPD-ENTER 15-11
15.3.3 Step 3: Define process module XXXDUPD-PA2 15-18

15.4 Completing dialog XXXDUPD using ADSC 15-21
15.4.1 Step 1: Retrieve dialog XXXDUPD 15-21
15.4.2 Step 2: Add a subschema . 15-23
15.4.3 Step 3: Define dialog options . 15-24
15.4.4 Step 4: Add a work record . 15-25
15.4.5 Step 5: Add premap and response processes 15-26
15.4.6 Step 6: Recompile the dialog . 15-28

15.5 Executing the application . 15-29
15.6 Summary . 15-36

Appendix A. Sample Application Components A-1

Appendix B. Development Tools in the CA-ADS Environment B-1
B.1 Overview . B-3
B.2 CA-ADS development tools . B-4

B.2.1 Invoking development tools . B-4
B.2.2 Exiting from development tools . B-6

B.3 Using ADSA . B-8
B.4 Using ADSC . B-16
B.5 Using MAPC . B-25
B.6 Using the IDD Menu Facility . B-31

Appendix C. Layout of the DEPARTMENT Record C-1

Index . X-1

Contents vii

viii CA-ADS User Guide

How to Use This Manual

How to Use This Manual ix

What this manual contains

■ Part I: Designing the Application talks about how you design an application for
development using CA-ADS tools and introduces the sample Department applica-
tion that illustrates concepts in this manual.

■ Part II: Developing the Prototype shows how you use CA-ADS development
tools to define an executable application prototype based on design specifications.

■ Part III: Enhancing the Application Definition shows how you develop a pro-
duction application by adding process logical and work records to dialogs in the
prototype application.

x CA-ADS User Guide

Who should use this manual

■ New application developers who need to learn how to use CA-ADS

■ Experienced application developers who are unfamiliar with CA-ADS

■ Any application developers who want to look up basic steps for defining applica-
tion components

How to Use This Manual xi

How to proceed

■ Go through the chapters in order when first learning how to use CA-ADS.

■ Design the sample Department application.

■ Build the sample Department application as you go through the manual.

■ Look at supplemental information whenever necessary:

– Appendix A: Sample Application Components lists components defined for
the sample Department application, providing cross-reference information for
each component.

– Appendix B: Development Tools in the CA-ADS Environment summarizes
how to use the CA-ADS application compiler (ADSA), dialog compiler
(ADSC), online mapping facility (MAPC), and the Integrated Data Dictionary
(IDD) menu facility.

– Appendix C: Layout of the DEPARTMENT Record shows how the DEPART-
MENT database record is defined at installation time in the demonstration
database.

The sample Department application uses navigational data access. If your site prima-
rily uses nonnavigational data access (SQL or Logical Record Facility), you may want
information on equivalent nonnavigational commands. For this information, you can
look at the CA-ADS Reference or CA-IDMS SQL Reference while building the Depart-
ment application.

xii CA-ADS User Guide

What you need to build the sample Department application

■ Access to the demonstration database provided for installation at each site.

■ Access to CA-ADS application development facilities, including authority to use
ADSA, ADSC, MAPC, and the IDD menu facility and authority to define applica-
tion components in the appropriate data dictionary.

How to Use This Manual xiii

 Related documentation

When you're first getting started, you will probably use:

■ CA-ADS Quick Reference

■ CA-IDMS Command Facility

■ CA-IDMS Transfer Control Facility

■ CA-IDMS Mapping Quick Reference Summary

When you're more familiar with CA-ADS, you can also use:

 ■ CA-ADS Reference

■ CA-IDMS Messages and Codes

■ IDD DDDL Reference

■ CA-IDMS Mapping Facility

■ CA-ADS Application Design Guide

■ CA-IDMS Performance Monitor User Guide

xiv CA-ADS User Guide

Understanding syntax diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE

OR

SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered com-
pletely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

← Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

��────────────────────── Shows the beginning of a complete piece of
syntax.

──────────────────────�� Shows the end of a complete piece of syntax.

──────────────────────� Shows that the syntax continues on the next line.

�────────────────────── Shows that the syntax continues on this line.

──────────────────────�─ Shows that the parameter continues on the next
line.

─�────────────────────── Shows that a parameter continues on this line.

�── parameter ─────────� Shows a required parameter.

 �─┬─ parameter ─┬─────�

└─ parameter ─┘
Shows a choice of required parameters. You must
select one.

 �─┬─────────────┬─────�

└─ parameter ─┘
Shows an optional parameter.

 �─┬─────────────┬─────�

├─ parameter ─┤

└─ parameter ─┘

Shows a choice of optional parameters. Select
one or none.

 ┌─────────────┐

 �─(─ parameter ─┴─────�
Shows that you can repeat the parameter or
specify more than one parameter.

┌───── , ─────┐

 �─(─ parameter ─┴─────�
Shows that you must enter a comma between
repetitions of the parameter.

How to Use This Manual xv

Sample syntax diagram

xvi CA-ADS User Guide

Chapter 1. Building a Prototype

1.1 Overview . 1-3
1.2 Stage I: Building the basic prototype . 1-4

1.2.1 Compiling the application (ADSA) . 1-4
1.2.2 Compiling the maps (MAPC) . 1-5
1.2.3 Compiling the dialogs (ADSC) . 1-6
1.2.4 User review . 1-6

1.3 Stage II: Adding process logic and data retrieval 1-7
1.3.1 ADSA enhancements . 1-7
1.3.2 Populating the data dictionary (IDD) 1-8
1.3.3 MAPC enhancements . 1-8
1.3.4 ADSC enhancements . 1-8

1.4 Stage III: Refining the maps and processes 1-10

Chapter 1. Building a Prototype 1-1

1-2 CA-ADS User Guide

1.1 Overview

 1.1 Overview

The development of a prototype can be approached in a variety of ways, depending
upon the needs of the design team. The procedures suggested in this manual are based
on a three-stage approach:

1. The initial stage performs rudimentary navigation of the application

2. The second stage begins to perform data retrieval and update

3. The final stage incorporates refinements that reflect the more complex require-
ments of an application running in a production environment

Each stage of the prototype is discussed below.

Chapter 1. Building a Prototype 1-3

1.2 Stage I: Building the basic prototype

1.2 Stage I: Building the basic prototype

First stage: You can develop the first stage of the prototype quickly and easily
because only skeletal maps and dialogs are needed for execution by the CA-ADS
runtime system. Typically, you compile maps with just enough information to identify
their use in the application process, and one dialog is compiled for each map. The
dialogs do not need a premap process or a response process. With a minimum of time
and effort, you can see how the application is going to work even before data proc-
essing takes place.

Load modules needed: To build an executable prototype, you need to provide
load modules for the runtime system by:

■ Compiling the application — The application and its components (the functions
and responses) are defined and compiled with ADSA.

■ Compiling the maps — Each map is formatted, defined, and compiled with
MAPC.

■ Compiling the dialogs — Each dialog is identified, associated with the appropriate
map, and compiled with ADSC.

The prototype can be executed when the application, map, and dialog load modules are
available for use by the CA-ADS runtime system. At this point, you have a mean-
ingful version of the prototype that can be presented for user review and modification.

Each of the activities for building the basic prototype is discussed separately below,
followed by user review considerations.

1.2.1 Compiling the application (ADSA)

The amount of detail you provide for a prototype can be as extensive as you, but the
basic prototype does not have to be elaborate.

Steps in compiling an application: After signing on to ADSA, you can compile
an application as follows:

1. Identify the application — The name of the application and related information
are supplied on the Main Menu

2. Name the task code — The task code that designates an entry point into the
application Task Codes screen. If there are multiple entry points, each task code
must be defined individually.

3. Define the responses — The responses that initiate the functions of an applica-
tion are defined on the Response/Function List and the Response Definition
screens. Each response is defined on a separate screen.

4. Define the functions — The functions that are initiated by the responses are
defined on the Response/Function List and the Function Definition screens. Each
function is defined on a separate screen.

1-4 CA-ADS User Guide

1.2 Stage I: Building the basic prototype

Note: Every function defined as a dialog function on the Function Definition
screen in ADSA must be defined to ADSC as a dialog.

If the function is a menu, the menu type should be specified on the Function Defi-
nition (Menu) screen.

5. Compile the application — The application is compiled by selecting the
compile option from the Main Menu

Application Definition Block and Task Activity Table: When the above-named
activities are completed successfully, ADSA defines an Application Definition Block
(ADB) for the application and updates the Task Activity Table (TAT). Both the ADB
and the TAT are stored as load modules in the dictionary and are used by the
CA-ADS runtime system when the application is executed.

1.2.2 Compiling the maps (MAPC)

Steps in compiling a map: Maps that are compiled for the first stage of the proto-
type usually contain all literal fields. You sign on to MAPC and take the following
steps to produce the prototype screens:

1. Identify the map — The map name and related information are supplied on the
Main Menu

2. Format the screen — The map design can be painted automatically using the
autopaint facility of MAPC, or can be explicitly laid out using the Layout screen.
The extent of the map design is left up to you. Some developers indicate the
purpose of the screen with a one-line caption (for example, SCREEN FOR
UPDATING EMPLOYEE RECORDS). Other developers prefer to format a
screen that more closely resembles the final application version, but with literal
values (such as hyphens or underscores) assigned to the variable data fields.

3. Edit the map fields — Each field on the map can be edited using the Field
Definition screen. If all fields have been defined as literals, you can accept the
default attributes by pressing [Enter] and proceed to the next editing screen;
MAPC requires editing for each field on the map.

You can take the defaults in many areas, but you must specify element names for
fields. Whenever you request COMPILE, if adequate information is available,
defaults are taken and the map is compiled.

4. Compile the map — You compile the map by selecting the compile option on
the Main Menu.

A map load module is stored in the DDLDCLOD area of the data dictionary when the
map has been compiled successfully.

Chapter 1. Building a Prototype 1-5

1.2 Stage I: Building the basic prototype

1.2.3 Compiling the dialogs (ADSC)

Using ADSC: One dialog needs to be compiled for each map used by the prototype.
To compile a prototype dialog, sign on to ADSC and specify the dialog name on the
Main Menu:

In addition, specify the subschema (if there is one) and the map associated with the
dialog on the Database Specifications and Map Specifications screens.

Because these are map-only dialogs, there is no need to use any other ADSC screens
for the first stage of the prototype. Compile the dialog by selecting the compile func-
tion from the Main Menu. Each dialog is defined on a separate screen.

Considerations: The following considerations should be noted when compiling a
dialog:

■ If a dialog is defined as a function on the Response/Function List screen in
ADSA, it must be defined on the Main Menu screen in ADSC (using the same
dialog name).

■ If a dialog is associated with a task code, it must be defined as a mainline dialog.

■ The associated map must be compiled before the dialog can be compiled.

Fixed Dialog Block: ADSC defines a Fixed Dialog Block (FDB) for every dialog
that is compiled successfully. The FDB is stored as a load module in the dictionary
and is used by the CA-ADS runtime system when the application is executed.

 1.2.4 User review

With the creation of the dialog load module, the basic prototype is ready to be pre-
sented to the user for online review. Modifications should be made to the existing
prototype, the necessary load modules recompiled, and the prototype resubmitted for
review until the users are satisfied.

1-6 CA-ADS User Guide

1.3 Stage II: Adding process logic and data retrieval

1.3 Stage II: Adding process logic and data retrieval

Second stage: The prototype becomes more functional in the second stage. You
can add activities such as the following to the prototype:

■ Global records (ADSA)

■ Security restrictions such as signon menus (ADSA)

■ Display capabilities (MAPC and IDD)

■ Premap and response process logic (ADSC and IDD)

The ADSA, MAPC, ADSC, and IDD activities used for these enhancements are
described separately below.

 1.3.1 ADSA enhancements

You can add the following ADSA features to the prototype at this point:

■ Global records (that is, records that are available for use by all dialogs in the
application) can be defined on the Global Records screen.

Note that the ADSO-APPLICATION-GLOBAL-RECORD appears on this screen
and is always included automatically as a global record.

■ User-program records (that is, records that are to be passed to a user program) can
be defined on the Function Definition (Program) screen, if they are needed.

■ Valid responses listed for a function can be resequenced or their display can be
suppressed on the second screen of the Function Definition (Menu) screen.

■ Signon menu functions can be specified on the second page of the General
Options screen. When security is designated as REQUIRED or OPTIONAL on
this screen, the following steps should be taken:

– Name a function as the application's signon function, using the second page of
the General Options screen

– Specify the above-named function as a menu function, using the Function
Definition screen.

– Specify that the menu is a signon menu, using the Menu Specification screen.

– Specify the SIGNON system function as the function initiated by a response,
using the Response/Function List screen.

– Specify the response that initiates the SIGNON system function as a valid
response for the named menu function, using the Function Definition (Menu)
screen.

When these changes have been made, recompile the application.

Chapter 1. Building a Prototype 1-7

1.3 Stage II: Adding process logic and data retrieval

1.3.2 Populating the data dictionary (IDD)

The data dictionary must contain the following components if they are to be used by
the application:

■ Dialog premap and response processes — Premap and response processes must be
stored as process modules in the data dictionary. If premap or response processes
are associated with a dialog, process modules must be defined in the data dic-
tionary before the dialog can be compiled.

Modules are added to the dictionary with the MODULE statement specifying
LANGUAGE IS PROCESS.

■ Map records and dialog work records — All work records used by a dialog and
all records associated with maps must be defined in the data dictionary before the
dialogs and maps can be compiled. Similarly, an application cannot be compiled
unless all global records associated with the application are defined in the data
dictionary. Records are added with the RECORD statement.

■ Edit and code tables — All stand-alone edit and code tables associated with map
records must be defined in the data dictionary before the map is compiled. Edit
and code tables are added with the TABLE statement.

For complete details on adding process modules, records, and tables to the data dic-
tionary, refer to the IDD DDDL Reference.

 1.3.3 MAPC enhancements

Variable map fields that were specified as literals for the first stage of the prototype
should be redefined as data fields and edited accordingly.

When the appropriate enhancements have been made, the map should be recompiled.

 1.3.4 ADSC enhancements

You now use ADSC, recompiling the dialog to include the premap and response proc-
esses, as well as the changes made to the map associated with this dialog. After
signing on to ADSC and naming the appropriate dialog on the Main Menu screen, you
can add the following features:

■ Work records — Supply the names of all work records associated with the dialog,
using the Records and Tables screen.

If the dialog is using subschema records, they must belong to the same subschema
as the dialog. Any dialog using the ADSO-APPLICATION-GLOBAL-RECORD,
must list this record on the Records and Tables screen.

■ Premap process — Supply the name of the premap process associated with the
dialog, using the Process Modules screen.

■ Response Process — Supply the name of the response process associated with the
dialog and a control key and/or response field value unique to that response
process, using the Process Modules screen.

1-8 CA-ADS User Guide

1.3 Stage II: Adding process logic and data retrieval

Recompile the dialog after making the appropriate enhancements.

Chapter 1. Building a Prototype 1-9

1.4 Stage III: Refining the maps and processes

1.4 Stage III: Refining the maps and processes

Third stage: The final stage of development can focus on refinement of the map
design and the map field attributes. Some of the following additions can be made:

■ Incorporate additional fields in the maps

■ Add or change map field attributes

■ Specify automatic editing on selected map fields

■ Provide informational messages

■ Add error messages

1-10 CA-ADS User Guide

 Chapter 2. Designing Maps

2.1 Overview . 2-3
2.2 Design standards for a dialog map . 2-4
2.3 Mapping procedures . 2-5
2.4 Choosing menu maps . 2-6

2.4.1 System-defined menu maps . 2-6
2.4.2 User-defined menu maps . 2-6
2.4.3 Reformatting and recompiling the system-defined menu 2-7
2.4.4 Designing a menu/dialog . 2-8

2.5 Designing dialog maps . 2-9

Chapter 2. Designing Maps 2-1

2-2 CA-ADS User Guide

2.1 Overview

 2.1 Overview

Maps displayed during the execution of the application interface directly with the ter-
minal operator and, therefore, can influence the success of an application. Conse-
quently, you must consider the appearance of the menu screens and the layout of the
dialog maps.

Successful map design: A successful map design should exhibit the following
attributes:

■ Consistency — Entities (for example, fields, headings, labels, responses, messages,
and control keys) should have the same meaning or effect throughout the applica-
tion. The meaning or effect need not be identical for every map, but should be
consistent within the broader confines of the system. In general, there are two
special fields on any screen: a message field and a response code field. These
areas should appear in a constant location on the screen throughout any applica-
tion; for maximum effectiveness, they should remain standard for all applications
at a site.

■ Convenience — Features of the system should be designed to associate related
entities by using similar constructs, positioning, and responses to produce similar
reactions from the system. For example, assign one particular control key to ini-
tiate the update function in all the dialogs of a given application.

■ Supportiveness — The reactions of the system should enable the user to handle
normal contingencies conveniently. Tutorial aids should be available when
needed. Displayed informational and/or error messages should be meaningful.

The remainder of this chapter discusses the following aspects of map design:

■ Standards to consider when designing maps

■ Mapping procedures that can be adopted by an installation

■ Choices available in the design of menu maps

■ Suggestions for designing dialog maps

Chapter 2. Designing Maps 2-3

2.2 Design standards for a dialog map

2.2 Design standards for a dialog map

You need to consider the following standards when designing dialog maps:

■ Design the map with the terminal operator in mind. For example, a very dense
screen is tiring and difficult to use. In general, the screen most pleasing to the
eye is about 40% full.

■ The placement of fields on the screen, the use of high intensity, and the neatness
of the format have a great deal of impact on the effectiveness of the system.

■ When the screen is sent to the terminal, the cursor should be in the position most
likely to be used for data entry. Other frequently used fields should be easily
accessible with the tab and return keys.

■ The sequence of fields, when tabbed, should match the most common pattern used
for data entry.

■ Fields requiring special attention should be highlighted and clearly visible.

■ The screens should be as uncluttered as possible. The common error of using one
screen format for excessive and/or dissimilar functions tends to produce cluttered
or busy screens; separate screens with some common fields are more usable.

■ Terminal users should be able to initiate processing by typing in the necessary
data and pressing a control key. They should not be required to make decisions
that could have been incorporated in program logic, nor should they be forced to
use control keys or responses needlessly.

2-4 CA-ADS User Guide

2.3 Mapping procedures

 2.3 Mapping procedures

The following illustrate the mapping procedures that might be implemented by a spe-
cific site:

■ Have one individual (for example, the data administrator) responsible for creating
and modifying all maps.

■ As much as possible, use the features of MAPC to handle editing, error handling,
error messages, and modifying field attributes.

■ Use a standard map template. Whenever possible, keep data fields in columns and
double space rows of data.

■ Use the BRIGHT attribute to contrast items on the screen that have different uses
(for example, highlight required fields). Be consistent in the use of attributes.

■ Use the cursor in a consistent manner. For example, either place the cursor at the
first field to be used for data entry or at the field where the terminal operator is to
enter the next function.

■ Use the BRIGHT attribute for redisplaying data fields that are in error.

Chapter 2. Designing Maps 2-5

2.4 Choosing menu maps

2.4 Choosing menu maps

When designing an application, you need to decide if system- or user-defined menu
maps are to be used.

The system-defined menu provides a standard format for the information provided by
the developer during the definition of the functions and responses of the application in
an ADSA session. If a format other than the standard format is desired (for example,
you want to redefine certain literal fields on the map or wants to supply site-specific
headers), the user-defined menu map is used. Both types of maps are discussed sepa-
rately below.

2.4.1 System-defined menu maps

Menu formats: If the menu map is to be system-defined, you have the option of
using one of the following menu formats:

■ Short description menu map (ADSOMUR1) — The menu screen that lists 30 valid
menu responses per page; a short (12-byte) textual description is displayed for
each response.

■ Long description menu map (ADSOMUR2) — The menu screen that lists 15 valid
menu responses per page; a long (28-byte) textual description is displayed for each
response name.

■ Signon menu map (ADSOMSON) — The menu screen that requires an
CA-IDMS/DC or CA-IDMS/UCF validation of user ID and password before the
menu request can be processed. The standard signon menu map can have 12 valid
menu response names per page with 28 bytes of descriptive text displayed for
each.

For detailed information about compiling these maps, refer to the CA-ADS Reference.

If none of the above menus meets the needs of the user, the system-defined menu map
can be altered by the user or a new menu (designated as a menu/dialog function) can
be formatted. Both methods of creating user-defined maps are discussed below.

2.4.2 User-defined menu maps

When user-specific modifications to the existing system-defined menu maps are neces-
sary, you can change the menu maps by using either of the following techniques:

■ Reformatting and recompiling the standard system-defined menu

■ Designing a menu/dialog (that is, a menu map that is part of a menu/dialog func-
tion)

Each of these methods is discussed below.

2-6 CA-ADS User Guide

2.4 Choosing menu maps

2.4.3 Reformatting and recompiling the system-defined menu

You can reformat and recompile the existing system-designed menu map, retaining the
same name. This method allows you to use the standard menu function rather than
designing and using a menu/dialog function.

Steps to reformat the system menu: Take the following steps to reformat the
system menu:

1. Obtain the source for the map being used (that is, ASDSOMUR1, ADSOMUR2,
or ADSOMSON) from the source data sets created when the distribution tape was
installed. The maps are stored as members under their own names.

2. Use the batch mapping compiler to store the source in the data dictionary.

3. Use MAPC to modify and recompile the menu map.

Considerations: When recompiling a menu map with MAPC, observe the fol-
lowing rules:

■ ADSO-APPLICATION-MENU-RECORD is a required map record. Optionally,
the menu can map to additional records, but it must always map to the
ADSO-APPLICATION-MENU- RECORD.

■ The menu must contain the same number of responses per page as the number of
responses for the selected map (that is, 30 for ADSOMUR1, 15 for ADSOMUR2,
or 12 for ADSOMSON).

■ The AMR-RESPONSE field of the ADSO-APPLICATION- MENU-RECORD
record is a required field. The first response name on the map must map to the
first occurrence of AMR-RESPONSE. Each subsequent response name must map
to the next corresponding occurrence.

■ The AMR-USER-ID and AMR-PASSWORD fields of the
ADSO-APPLICATION-MENU-RECORD are required on a signon menu map.
The user ID data field must map to AMR-USER-ID, and the password data field
must map to AMR-PASSWORD.

■ All other fields on the ADSO-APPLICATION-MENU-RECORD are optional.
The map data fields that are used must be associated with the appropriate fields on
the record (for example, heading data must map to AMR-HEADING).

If using the AMR-KEY field, note that this field appears as a single byte (the AID
byte) in the ADSO-APPLICATION-MENU- RECORD. The AMR-KEY field is
associated with a code table (ADSOAIDM) that translates the AID byte to more
easily readable characters (for example, 1 translates to PF1, % translates to PA1).

Refer to the CA-IDMS Mapping Facility for more information on using MAPC to
recompile a map.

Chapter 2. Designing Maps 2-7

2.4 Choosing menu maps

2.4.4 Designing a menu/dialog

You can design and compile an entirely new menu with MAPC. This map must be
defined as a menu/dialog function of the application.

Steps for defining a menu/dialog function: Follow these procedures when
defining a menu/dialog function:

1. Design and compile the map using MAPC. Observe the following rules when
compiling the map:

■ ADSO-APPLICATION-MENU-RECORD must be one of the records associ-
ated with the map.

■ The AMR-RESPONSE field is required for all menus. The number of
required occurrences depends on the number of responses per page (to a
maximum of 50) specified on the ADSA Menu Specification screen. The first
response name on the map must map to the first occurrence of
AMR-RESPONSE; each subsequent occurrence must map to the next corre-
sponding occurrence of AMR-RESPONSE.

■ The AMR-USER-ID and AMR-PASSWORD fields are required for signon
maps. The user ID data field must map to AMR-USER-ID, and the password
data field must map to AMR-PASSWORD.

■ All other fields on the ADSO-APPLICATION-MENU- RECORD are
optional. The map data fields used must be associated with the appropriate
fields on the record (for example, heading data must map to
AMR-HEADING).

2. Add the process source to the data dictionary in an IDD session. (The dialog
associated with the menu does not have to include any process code, although the
choice of a menu/dialog function suggests that some processing is intended.)

3. Compile the dialog in an ADSC session, associating the map and any processes
with the dialog using the ADSC Map Specifications screen. Note that the dialog
must be compiled to include the map before the application can be executed at
runtime.

4. Define the dialog as a menu/dialog function for the application, using the ADSA
Response/Function List screen.

An installation can develop standard map templates and the associated boilerplate code
for site-specific menu/dialogs. When a menu is needed, programmers can obtain a
copy of the template/boilerplate, fill in the appropriate fields and the edit/code tables
needed for those fields, and submit it to the data administrator for approval.

2-8 CA-ADS User Guide

2.5 Designing dialog maps

2.5 Designing dialog maps

Design questions: Each dialog map is associated with its own dialog and must be
designed to reflect the function of the associated dialog. The application specifications
developed during the initial design stages can be used to answer design questions such
as the following:

■ How many of the dialogs specified for this application will require maps?

■ What premap and response processes are required for each map?

■ What job is performed by each process?

■ Will the map be used to pass data between processes and/or between dialogs?
What data will be passed?

■ What database and mapping work records are associated with the map?

■ What editing criteria should apply to the map fields?

Map templates: Just as site-specific standards can be established for menu/dialogs,
an installation can use map templates to standardize the formatting of maps associated
with dialog functions. Programmers can obtain a copy of the template; fill in the
appropriate fields, indicating the corresponding map record fields; and submit this
information to the data administrator. The data administrator can then add the neces-
sary map design, map records, and edit/code tables (if any) to the data dictionary.

Chapter 2. Designing Maps 2-9

2-10 CA-ADS User Guide

 Chapter 3. Designing Dialogs

3.1 Overview . 3-3
3.2 Dialog characteristics . 3-4

3.2.1 Dialog level . 3-4
3.2.2 Dialog status . 3-5
3.2.3 Dialog control . 3-5

3.3 Design considerations . 3-7
3.3.1 Database currencies . 3-7
3.3.2 Record buffer management . 3-9
3.3.3 Database, work, and map records . 3-9
3.3.4 Logical records . 3-10
3.3.5 NEW COPY records . 3-11
3.3.6 Working storage areas . 3-11
3.3.7 Queue records . 3-11
3.3.8 Scratch records . 3-12
3.3.9 Extended run units . 3-13
3.3.10 Longterm locks . 3-14
3.3.11 Global records . 3-15

Chapter 3. Designing Dialogs 3-1

3-2 CA-ADS User Guide

3.1 Overview

 3.1 Overview

A dialog is a unit of work within an CA-ADS application that enables interaction with
the terminal operator. Because dialogs are the basic building blocks of an CA-ADS
application, it is important that they be well-designed. This chapter discusses charac-
teristics and design features of dialogs that merit the attention of application devel-
opers.

Chapter 3. Designing Dialogs 3-3

3.2 Dialog characteristics

 3.2 Dialog characteristics

The characteristics of a dialog determine its role within the application. Each dialog
has an implicit level and status, and can pass and receive control of the processing.
The significance of the dialog level and status and the manner in which control is
passed are discussed below.

 3.2.1 Dialog level

The level of a dialog refers to its position within the application structure. You can
pass processing control to a dialog at the next lower level, the same level, the next
higher level, or the top level of the application structure.

Note: The meaning of TOP changes whenever a LINK command is executed. The
dialog issuing LINK becomes the current TOP.

Impact of the dialog level: At runtime, the dialog level affects the following
aspects of an application:

■ Availability of data — When combined with the manner in which processing
control is received, the level of a dialog governs the data passed in the record
buffer blocks and the currencies that are established, saved, stored, or released.

■ Use of system resources — The runtime system maintains record buffer blocks,
database currency blocks, and variable dialog blocks for dialogs at each level.
There is a direct correlation between the number of dialog levels in an application
and the size of the storage pool that is needed.

■ Performance — The number of dialog levels can affect the performance of an
application. For example, performance times are affected if a frequently accessed
dialog is located three or four levels down in an application structure.

An application can be composed of any number of dialog levels, but the most efficient
application uses many levels only when absolutely necessary.

Mainline dialog: The top-level dialog must be a mainline dialog and must be
defined as such by the application developer. A mainline dialog is the entry point to
the application. An application can have more than one mainline dialog; entry points
can also be established at a lower level in the application structure. In addition to
defining a task code for the top-level dialog, the developer can identify an alternative
entry point by using the Task Codes screen to associate a task code with a lower-level
function.

3-4 CA-ADS User Guide

3.2 Dialog characteristics

 3.2.2 Dialog status

Operative and nonoperative status : A dialog can have an operative or a non-
operative status within the application thread. A dialog becomes operative when it
receives control and begins executing; at a given level, only one dialog can be opera-
tive at a time. When control passes to a dialog at another level, the issuing dialog can
remain operative or can become nonoperative, depending upon the level of the next
dialog. For example, when control is passed with the LINK command, the issuing
dialog remains operative; when control is passed with the TRANSFER command, the
issuing dialog becomes nonoperative.

As long as a dialog is operative, all data that it has acquired is retained. When a
dialog becomes nonoperative, its data is released. See "Database currencies" later in
this chapter for a summary of the way in which a dialog's status is affected by the
successful execution of a control command.

Application thread: Within the application structure, only one dialog executes at a
time. The sequence of dialog execution within an application structure is called the
application thread. The response of the terminal operator determines the dialogs that
constitute a given application thread. The following diagram shows an application
structure and one application thread.

One dialog can exist in several places within the application structure and be part of
the same or different application threads. A dialog can execute more than once within
the application thread whether or not it remains operative.

In the diagram below, the shaded boxes represent an application thread that includes
dialog A, dialog C, and dialog D.

 3.2.3 Dialog control

A dialog passes control to another dialog based on the execution of a control command
and/or the terminal operator's selection of processing. The dialog that receives control
can be a different dialog, a copy of the executing dialog, or all or part of the executing
dialog itself.

Operations performed by control commands: You can use specific control
commands to perform the following operations:

■ Pass processing control from one dialog to another dialog or to a user program

■ Display a dialog's map

■ Terminate an existing dialog or application

 ■ Exit CA-ADS

■ Pass processing control to specified points within a dialog and reinitialize the
record buffers associated with a dialog

Chapter 3. Designing Dialogs 3-5

3.2 Dialog characteristics

Most of the control commands used are available to all applications. When designing
dialogs that will become part of an ADSA application, you can also use the
EXECUTE NEXT FUNCTION command.

3-6 CA-ADS User Guide

3.3 Design considerations

 3.3 Design considerations

You need to keep the following CA-IDMS/DB, CA-IDMS/DC and CA-IDMS/UCF
(DC/UCF), and CA-ADS features in mind when designing the dialogs:

 ■ Database currencies

■ Record buffer management

■ Working storage areas

■ Extended run units

 ■ Longterm locks

 ■ Global records

Each of these issues is presented below.

 3.3.1 Database currencies

In CA-ADS, currency is maintained automatically for the user. To facilitate this
feature, a currency control block is created that maintains currency information. At
runtime, a currency block is created for each dialog in the application structure that
performs database requests.

Passing currencies: Database currencies are passed from one dialog to another
dialog at a lower level, enabling dialogs to continue database processing from an
established position in the database. Currencies are cumulative. The currencies estab-
lished by each dialog are passed to lower-level dialogs, which, in turn, establish their
own currencies; the cumulative currencies are passed to the next lower-level dialog.

Currencies are established, saved, restored, and released as follows:

■ Established — Currency is established with the dialog's first functional database
call. Established currencies are updated when database commands (for example,
FIND, OBTAIN, ERASE) are encountered during the transaction. Currency is
nulled when a dialog receives control with a RETURN or TRANSFER command.

■ Saved — When a LINK, DISPLAY, or INVOKE command is issued, the database
currencies established with the last database command in the dialog are saved.
Saved currencies are available to lower-level dialogs and are restored to the
issuing dialog if processing control returns.

■ Restored — Saved currencies are restored when CA-ADS opens a transaction in
the dialog receiving control (that is, saved currencies are restored just prior to the
first database call).

■ Released — When a LEAVE, RETURN, or TRANSFER command is issued, all
database currencies at the same and lower levels are released. The dialog
receiving control must establish its own currencies or use the currencies passed to
it from another higher-level dialog.

Chapter 3. Designing Dialogs 3-7

3.3 Design considerations

Note that currencies, as described in this section, pertain only to DML run units. SQL
run units are not managed by the CA-ADS runtime system. Please refer to the SQL
programming guide for more information on SQL programming techniques.

The following table shows the ways in which the passing and receiving of control
affects the contents of the currency block.

Command New level
established

Status of
issuing dialog

Data available
to receiving
dialog

Currency action

Issuing
dialog

Receiving
dialog

DISPLAY No Operative All data Saved N/A

INVOKE Yes Operative All data Saved Restored

LEAVE No Non-operative No data Released Must establish

LINK

DIALOG Yes Operative All data Saved Restored

PROGRAM No Operative All, some, or
none,
(depending on
command spec-
ification)

Saved Must establish

RETURN No Non-operative
(any operative
dialogs
between the
issuing dialog
and the
receiving
dialog also
become non-
operative)

Data previously
acquired by the
receiving
dialog

Released
(currencies
for any
dialogs
between the
issuing
dialog and
the
receiving
dialog are
also
released)

Restored

TRANSFER No Non-operative All data except
that acquired
by the issuing
dialog

Released Can use curren-
cies previously
established by
higher-level
dialogs

3-8 CA-ADS User Guide

3.3 Design considerations

3.3.2 Record buffer management

Record buffer management is affected by whether the record used by the dialog is a
database, work, or map record; a logical record; or a record that has been assigned the
NEW COPY attribute. The manner in which the CA-ADS system allocates space for
these records in the Record Buffer Block (RBB) is discussed below.

3.3.3 Database, work, and map records

At the beginning of each application thread, the CA-ADS runtime system allocates a
primary Record Buffer Block (RBB) and initializes a buffer in the RBB for each
record associated with the top-level dialog.

Considerations: All lower-level dialogs can access records in any of the existing
buffers, unless one of the following conditions is true:

■ The dialog that receives control accesses a database record or a work record that
has been assigned the NEW COPY attribute during dialog compilation.

■ The dialog that receives control accesses a database record, work record, or logical
record not used by a higher-level dialog.

■ The dialog that receives control accesses a database record that uses a subschema
not used by a higher-level dialog.

If one or more of these conditions exist, CA-ADS allocates and initializes an addi-
tional buffer for the record.

Additional buffers: Additional buffers are also allocated and initialized when one
of the following situations exists:

■ The record is assigned the WORK RECORD attribute during dialog compilation.

■ The record is associated with the map used by the dialog.

■ The record is named explicitly in a database command.

The following diagram shows the sequence in which CA-ADS initializes record buffers
as a series of dialogs receives control.

When dialog A begins executing, CA-ADS allocates buffers for the EMPLOYEE and
SKILL record types. Dialog B uses the previously allocated EMPLOYEE record
buffer, but requires a new buffer for the OFFICE record. Dialog C requests and
receives a new copy of the EMPLOYEE record buffer, but uses the previously allo-
cated SKILL record buffer. Dialog D requires new buffers for both the DEPART-
MENT and JOB records. CA-ADS allocates a secondary RBB to accommodate the
DEPARTMENT record, but uses the remaining space in the primary RBB for the JOB
record.

Chapter 3. Designing Dialogs 3-9

3.3 Design considerations

 3.3.4 Logical records

Considerations: When an application thread contains dialogs that use a combina-
tion of database records and logical records, special considerations apply with respect
to record buffer management. For each database record component of a logical record,
CA-ADS initializes individual, contiguous record buffers. The logical record compo-
nents are placed in the buffer in the order named in the logical record definition.

For example, consider the EMP-JOB-LR logical record, which consists of four data-
base records: EMPLOYEE, DEPARTMENT, JOB, and OFFICE records. If dialog B
accesses EMP-JOB-LR, CA-ADS initializes new record buffers for each of the four
records listed above (in that order) regardless of whether buffers for one or more of
the records were initialized when dialog A, a higher-level dialog, began executing.
Therefore, dialog B (and lower-level dialogs accessing the same logical record) does
not have access to data established in the record buffer by dialog A. However, dialogs
at levels lower than dialog B will use the buffers established by dialog A if those
dialogs use the same database records as dialog A.

3-10 CA-ADS User Guide

3.3 Design considerations

When using both database records and logical records, the first dialog of the applica-
tion thread should include an INITIALIZE command for the logical record. This
action associates the logical record with the top-level dialog and ensures that the buffer
for the entire logical record will be allocated and available to all lower-level dialogs.
Lower-level dialogs will use the component record buffers established at the highest
level unless the logical record itself is referenced.

3.3.5 NEW COPY records

Records can be assigned the NEW COPY attribute on the Records and Tables screen
during the definition and compilation of a dialog. The NEW COPY designation signi-
fies that the record in question is to receive newly initialized record buffers when the
dialog is executed.

The NEW COPY attribute is used when the programmer wants to obtain another
occurrence of a record type without overwriting the data that is in the current buffer.
To have the use of a second, temporary buffer for the same record type, the pro-
grammer links to a lower-level dialog that has specified NEW COPY for that record.
An occurrence of the record type is brought into the new buffer and processed as
directed. When control returns to the calling dialog, the record buffer at the upper
level contains the same data as before; the data in the lower-level record buffer is no
longer available.

Dialogs at a level lower than the dialog with a NEW COPY record will not use the
NEW COPY buffer, but will use the first buffer allocated for the record.

3.3.6 Working storage areas

DC/UCF queue and scratch areas can be used by the CA-ADS dialogs as working
storage areas. The methods by which dialogs can store and use records in the queue
and scratch areas are presented below.

 3.3.7 Queue records

Queue records can be used as work records that are shared by tasks on all DC/UCF
terminals. Entries are directed to a queue with database commands embedded in the
dialogs or batch programs. Queues can transfer data across the entire DC/UCF system
and are maintained across system shutdowns and crashes. Currencies and locks are
not passed between tasks.

Characteristics: Queue records have the following characteristics:

■ A queue header record is allocated either at system compilation or by an applica-
tion dialog.

■ Queue records participate in a set in the data dictionary; this set is commonly
referred to as a queue.

■ Queue records are locked by each task; no other task can use them until the locks
are released.

Chapter 3. Designing Dialogs 3-11

3.3 Design considerations

Queues created at system compilation with the system QUEUE statement can be
accessed by an CA-ADS application. Additionally, an application can create its own
queues by requesting storage space with a GET QUEUE statement in the dialog
process code.

Functions: An application can use queue records to accomplish the following func-
tions:

■ Automatically initiate a task — DC/UCF initiates a task that processes the queue
entries when the number of entries in a queue reaches a specified limit or when a
specified time interval has passed. For example, an application can write records
to a queue and the system will route the records to a printer when the collected
records exceed the specified limit.

■ Avoid prime time updating — Records that need to be updated can be collected
on a queue; the queue can be accessed by a batch program at a low-use time.

■ Prevent run-away tasks — A maximum limit can be established for the number of
entries permitted in a queue. The UPPER LIMIT parameter of the QUEUE state-
ment is especially useful in a test environment to prevent a looping program from
filling the scratch/queue area.

For detailed descriptions of the queue management commands, refer to the CA-ADS
Reference.

 3.3.8 Scratch records

Scratch records are shared between tasks and saved across the transactions of an
CA-ADS application. Used as a temporary storage area, scratch records provide a
means of passing data between tasks running on the same terminal; they are not acces-
sible to tasks that execute on other terminals and are not saved across a system shut-
down or a system crash.

Characteristics: The following characteristics are associated with scratch records:

■ Scratch records are stored in the data dictionary.

■ Multiple scratch areas are allowed for a task and multiple records can be main-
tained within a scratch area.

■ Currency is maintained for each area and record, and can be passed between tasks.

■ The scratch area is allocated dynamically within the storage pool. When all
scratch records are deleted, the area will also be deleted.

Functions: Scratch records can be used in the following ways within an application:

■ To save input acquired from two or more dialogs over the course of the applica-
tion.

■ To allow multiple occurrences of a record to be mapped out at one time. For
example, if the names, addresses, and phone numbers of all department employees
need to be mapped onto the same screen in multiples of five, the following steps
could be taken:

3-12 CA-ADS User Guide

3.3 Design considerations

1. Walk the set of employee records, moving the required data to a work record
that contains multiply-occurring fields.

2. When the work record contains the data on five employees, move the contents
of the work record to the scratch area with a PUT SCRATCH command so
that, in effect, a screenful of data on five employees is put on each record in
the scratch file.

3. Walk the set of scratch records when the screens of information are to be
displayed.

■ To pass the contents of the record buffer when a dialog receives control with a
TRANSFER command. Data acquired by the dialog issuing a TRANSFER
command is not available to the dialog receiving control. However, the dialog
receiving control could access buffer data that had been placed in a scratch record.

Refer to the CA-ADS Reference for detailed descriptions of the scratch management
commands.

3.3.9 Extended run units

Typically, an CA-ADS transaction begins when the dialog issues a command accessing
the database (for example, OBTAIN) and ends when the runtime system encounters
the next control command issued by the dialog (that is, LINK, INVOKE, DISPLAY,
TRANSFER, LEAVE, or RETURN). An extended transaction is a transaction that is
kept open when the runtime system encounters the LINK command under the fol-
lowing circumstances:

■ When the LINK is to the premap process of a dialog with no associated
subschema

■ When the LINK is to the premap process of a dialog with an associated schema
and subschema identical to those of the calling dialog

■ When the LINK is to a user program

Implications: Implications of the extended transaction are as follows:

■ Currencies are passed to the lower-level dialog and are restored upon return to the
upper-level dialog.

■ Currencies are not passed to user programs; currencies are saved and restored to
the upper-level dialog when control is returned.

■ The lower-level dialog can perform error checking to decide whether to issue a
ROLLBACK command.

■ Because a FINISH is not issued, record locks held by the upper-level dialog are
not released. A COMMIT can be coded in the upper-level dialog if the developer
needs to release locks before linking to the lower-level dialog.

■ If a COMMIT is issued prior to the LINK command and an abend occurs in the
lower-level dialog, the rollback will be incomplete; the rollback will only go to the
COMMIT checkpoint and not to the start of the transaction.

Chapter 3. Designing Dialogs 3-13

3.3 Design considerations

■ If a lower-level user program opens its own transaction, a deadlock can occur.
The possibility of a deadlock condition can be avoided by taking either of the
following actions:

– Issue a COMMIT prior to the LINK.

– Pass the subschema control block to the user program and let the program use
the same transaction. Issue no BINDs or FINISHes in the user program.

For more information on the extended transaction, refer to the CA-ADS Reference.

 3.3.10 Longterm locks

The KEEP LONGTERM command sets or releases longterm record locks. Longterm
locks are shared or exclusive locks that are maintained across transactions. Once the
longterm locks are set, all other transactions are restricted from updating or accessing
the named records until the dialog explicitly releases the locks. The following
example requests the release of all longterm locks associated with the current task:

KEEP LONGTERM ALL RELEASE

Monitoring database activity: The KEEP LONGTERM command can also be
used to monitor the database activity associated with a record, set, or area. When a
dialog is updating records that could also be updated by another user, the following
code can be included in the premap process of the named dialog:

KEEP LONGTERM longterm-id NOTIFY CURRENT record-name

This command instructs the CA-ADS runtime system to monitor the database activity
associated with the current occurrence of the named record type.

The following code is included in the response process of the same dialog:

KEEP LONGTERM longterm-id

TEST RETURN NOTIFICATION INTO return-location-v

This command requests notification of any database activity against records that were
specified in the KEEP LONGTERM premap process. If appropriate, the dialog can
check the return value placed in the specified work record field.

For more information on the KEEP LONGTERM command, refer to the CA-ADS
Reference.

3-14 CA-ADS User Guide

3.3 Design considerations

 3.3.11 Global records

Global records are records that are available to all dialogs, maps, and user programs in
an application. Subschema records cannot be defined as global records.

System-defined global record: The ADSO-APPLICATION-GLOBAL-RECORD
is the system-defined global record that enables communication between the applica-
tion and the runtime system. To be accessed by a dialog, the
ADSO-APPLICATION-GLOBAL-RECORD must either be specified as a dialog work
record or be associated with the dialog's map. This record is initialized when an appli-
cation is first loaded by the runtime system.

All fields in the ADSO-APPLICATION-GLOBAL-RECORD are addressable by
dialogs or user programs. Selected fields from the
ADSO-APPLICATION-GLOBAL-RECORD are listed below. For a complete listing
of these fields, refer to the CA-ADS Reference.

AGR-NEXT- FUNCTION: The AGR-NEXT-FUNCTION field contains the name of
the next function that is to be executed. When the dialog associated with the current
function ends with an EXECUTE NEXT FUNCTION command, the function named
in the AGR-NEXT-FUNCTION field is executed by the runtime system. A dialog or
user program can query this field to check what the next function will be. Modifica-
tion of the AGR-NEXT-FUNCTION field, however, does not change the next function
to be executed; a change in the next function can only be accomplished by modifica-
tion of the AGR-CURRENT-RESPONSE field (see below).

AGR-DEFAULT- RESPONSE: The AGR-DEFAULT-RESPONSE field contains
the default response value specified on the Function Definition screen when an appli-
cation is compiled. When a value is specified and the screen includes a data field for
a default response, the terminal operator can type in a new value or can space out the
value that appears.

AGR-CURRENT- RESPONSE: The AGR-CURRENT-RESPONSE field contains
the response specified by the terminal operator. The process code of a dialog or user
program can also move values into this field, overwriting the user response. Note that,
if AGR-CURRENT-RESPONSE is modified by a dialog, security is not checked for
the response moving into the field, even if security is associated with this response.

When EXECUTE NEXT FUNCTION is encountered within process code, the response
named in the AGR-CURRENT- RESPONSE field is executed if it is a valid response
for the current function. The AGR-CURRENT-RESPONSE field determines the next
function in the application thread (that is, it determines the value moved into the
AGR-NEXT-FUNCTION field).

Moving a value into AGR-CURRENT- RESPONSE: The following diagram
shows the manner in which the runtime system moves a value into the
AGR-CURRENT-RESPONSE field. The value in AGR-CURRENT-RESPONSE
depends upon whether the AGR-DEFAULT-RESPONSE field contains a value;
whether the terminal operator enters a new value in the response field; or whether

Chapter 3. Designing Dialogs 3-15

3.3 Design considerations

there is a response value associated with the control key (other than ENTER) pressed
by the terminal operator. The runtime system executes the response named in the
AGR-CURRENT-RESPONSE field after determining that it is a valid response for the
current function.

AGR-EXIT-DIALOG: The AGR-EXIT-DIALOG field initially contains the name of
the exit dialog specified on the Application Definition screen. This field can be used
to link to a special routine. For example, one department of a company might want
the employee name specified as John Doe, while another department wants the name
specified as Doe, John. The same dialog could be used for both departments by
linking to an exit dialog (that is, LINK TO AGR-EXIT-DIALOG) containing a name
routine.

AGR-PRINT- DESTINATION: The AGR-PRINT-DESTINATION field initially
contains the default name of the printer for the application as specified on the ADSA
Application Definition screen. Dialogs and user programs can use this print destina-
tion with the WRITE PRINTER DESTINATION command.

AGR-USER-ID: The AGR-USER-ID field can be queried by dialogs and user pro-
grams.

3-16 CA-ADS User Guide

3.3 Design considerations

AGR-PRINT-CLASS: The AGR-PRINT-CLASS field initially contains the default
printer class for the application as specified on the ADSA Application Definition
screen. The dialog can reference this field with the WRITE PRINTER CLASS
command.

AGR-SIGNON- SWITCH: The AGR-SIGNON-SWITCH field can be queried to
determine if there has been a valid signon.

AGR-SIGNON- REGMTS: The AGR-SIGNON-REQMTS field indicates whether
signon is optional, required, or not used for the signon menu, as specified on the Secu-
rity screen. This field can be referenced for additional security checking.

AGR-MAP- RESPONSE: The AGR-MAP-RESPONSE field can be used as a
response field, in place of the $RESPONSE field, in any user-defined nonmenu map.
The dialog can initialize this response field before mapout so that the desired default
response appears on the map. For input purposes, the AGR-MAP-RESPONSE field
works in the same manner as the $RESPONSE field. For information on the
$RESPONSE field, refer to the CA-IDMS Mapping Facility.

AGR-MODE: The AGR-MODE field initially contains the value STEP or FAST as
specified on the Application Definition screen. Typically, the design of a dialog map
includes a field that displays the value of AGR-MODE. The terminal operator can
change this field at any time.

The following examples show how the AGR-MODE field can be used, in conjunction
with the EXECUTE NEXT FUNCTION command, to implement a STEP/FAST mode
for an ADSA application. The logic in the first example assumes that all data field
validation is handled by the automatic editing specifications in the dialog's map. The
logic in the second example assumes that additional data validation is required in the
response process code. In both cases, any data entered by the terminal operator is
always processed. Note that the first pass flag field has no significance in FAST
mode.

Example 1: This sample process code illustrates the manner in which a dialog can
query the AGR-MODE field of the ADSO-APPLICATION-GLOBAL- RECORD to
determine what course to follow. If the dialog is in STEP mode, the dialog redisplays
the screen with a confirmation message for the terminal operator; if in FAST mode,
control is passed immediately to the next function. The initial value of AGR-MODE
is supplied by the runtime system; the user can alter the value of AGR-MODE at any
time during application execution.

Chapter 3. Designing Dialogs 3-17

3.3 Design considerations

IF ANY OF (EMPLOYEE-NBR, SKILL-CODE, SKILL-LEVEL)

 ARE CHANGED

 DO.

MOVE 'Y' TO FIRST-PASS-FLAG.

MOVE EMPLOYEE-NBR TO WK-EMPNBR.

MOVE SKILL-CODE TO WK-SKLCODE.

MOVE SKILL-LEVEL TO WK-SKLEVEL.

LINK TO 'CEMDUEMP'.

 END.

IF AGR-STEP-MODE

 DO.

 IF FIRST-PASS-FLAG='Y'

 DO.

MOVE 'N' TO FIRST-PASS-FLAG.

DISPLAY MSG TEXT IS 'EMPLOYEE UPDATED'.

 END.

MOVE 'Y' TO FIRST-PASS-FLAG.

 END.

EXECUTE NEXT FUNCTION.

Example 2: The sample code shown in the following example shows the use of the
AGR-MODE field when data validation needs to be handled by code in the response
process. Note that the EXECUTE NEXT FUNCTION command is never encountered
while uncorrected validation errors still exist.

3-18 CA-ADS User Guide

3.3 Design considerations

IF ANY OF (EMPLOYEE-NBR, SKILL-CODE, SKILL-LEVEL)

 ARE CHANGED

 DO.

MOVE 'Y' TO FIRST-PASS-FLAG.

IF EMPLOYEE-NBR GE 2??? AND SKILL-CODE='A'

 DO.

MOVE 'Y' TO ERROR-FLAG.

DISPLAY MSG TEXT IS

'EMPLOYEE NUMBER/SKILL CODE MISMATCH'.

 END.

MOVE 'N' TO ERROR-FLAG.

MOVE EMPLOYEE-NBR TO WK-EMPNBR.

MOVE SKILL-CODE TO WK-SKLCODE.

MOVE SKILL-LEVEL TO WK-SKLEVEL.

LINK TO 'CEMDUEMP'.

 CALL EMPDTE25.

 END.

IF ERROR-FLAG='Y'

DISPLAY MSG TEXT IS

'EMPLOYEE NUMBER/SKILL CODE MISMATCH'.

CALL EMPDTE25.

!CC

DEFINE EMPDTE25.

!CC

IF AGR-STEP-MODE

 DO.

 IF FIRST-PASS-FLAG='Y'

 DO.

MOVE 'N' TO FIRST-PASS-FLAG.

DISPLAY MSG TEXT IS 'EMPLOYEE UPDATED'.

 END.

MOVE 'Y' TO FIRST-PASS-FLAG.

 END.

EXECUTE NEXT FUNCTION.

The following fields from the ADSO-APPLICATION-GLOBAL- RECORD are often
mapped to screens associated with user-defined nonmenu maps:

 ■ AGR-DIALOG-NAME

 ■ AGR-APPLICATION-NAME

 ■ AGR-CURRENT-FUNCTION

 ■ AGR-FUNCTION-DESCRIPTION

 ■ AGR-DATE

 ■ AGR-USER-ID

 ■ AGR-MODE

 ■ AGR-PASSED-DATA

 ■ AGR-MAP-RESPONSE

For an illustration of how these fields can be used on maps, refer to "Designing maps"
in Chapter 4.

Chapter 3. Designing Dialogs 3-19

3-20 CA-ADS User Guide

 Chapter 4. Naming Conventions

4.1 Overview . 4-3
4.2 Naming application entities . 4-4
4.3 Naming database information entities . 4-6

Chapter 4. Naming Conventions 4-1

4-2 CA-ADS User Guide

4.1 Overview

 4.1 Overview

The establishment of naming conventions reduces the accumulation of redundant data
and improves the overall design of an application. Naming convention standards apply
to the components of an application as well as to the database entities accessed by the
application. Naming conventions for application entities and database information
entities are each discussed separately below.

Chapter 4. Naming Conventions 4-3

4.2 Naming application entities

4.2 Naming application entities

Naming conventions make it easier to keep track of application components as they are
created and maintained. While mnemonic names can work well for less complex
applications, mnemonics are inadequate when handling the large volume of complex
applications that typically exist at most sites. Adhering to a naming convention eases
the construction of component names, eases the reconstruction of component names if
one is forgotten, and eases the use and maintenance of an application.

Naming convention standards: The following table lists the naming convention
standards used for the sample application in this manual.

Assigning names: Names in an application can be assigned in the following
manner:

■ Dialogs, maps, tables, programs, help modules, and reports can use the con-
ventions in preceding table as follows:

Position Value Meaning

1 C CA-IDMS product

2-3
EM

IS

FS

MS

SY

Type of application:

 Employee information

 Information system

 Financial system

 Manufacturing system

 System activities

4
D

F

M

P

H

R

S

T

U

Component type:

 Dialog

 Function

 Map

 User-defined program

 Help module

 Report

 Report

 Subschema

 Table

 Menu

5
A

C

D

E

I

M

U

Component functions:

 Add operation

Encode/decode (column 4 indicates table)

 Delete operation

Edit operation (column 4 indicates table)

 Inquiry operation

 Modify operation

 Update operation

6-8
xxx

Component designator:

Three characters used as unique

identifiers for the component

4-4 CA-ADS User Guide

4.2 Naming application entities

Dialog: CEMDILIS

Map: CEMMILIS

Code table: CEMTCLIS

Edit table: CEMTELIS

Menu: CEMUILIS

User program: CEMPILIS

Help module: CEMHILIS

Report: CEMRILIS

■ Dialog premap and response process names can be the concatenation of the dialog
name and the suffix -PREMAP or -RESPONSE, as in the following examples:

CEMDILIS-PREMAP

CEMDILIS-RESPONSE

If there are multiple response processes, the suffixes can be structured to reflect
the function of each response process, as follows:

CEMDILIS-ADDRESP

CEMDILIS-DELRESP

■ Names for subroutines included in the premap and response processes can be
made up of a meaningful name of up to 6 characters with a 2-digit suffix, as
follows:

PASSDT?5

MESSGE97

DBERR99

The numeric suffixes can be assigned and incremented as the subroutines appear
in the dialog. This numbering convention makes it easier to locate a subroutine in
the dialog listing. For example, MESSGE97 is located near the end of the listing
while PASSDT05 is located near the beginning.

Chapter 4. Naming Conventions 4-5

4.3 Naming database information entities

4.3 Naming database information entities

Glossary: The creation of a glossary can be an effective means of establishing
naming conventions for database information. The glossary can be stored in the dic-
tionary where it is readily available as a reference tool. Tools such as the glossary
also aid in the development of consistent site-specific application coding standards.

Example: The following example shows sample entries from one type of glossary.
This example shows one way in which a glossary can be defined; each design team
must determine the naming conventions that best suit its needs. Note that the word
WORD in this example is a user-defined entity defined to the data dictionary, as
follows:

The sample entries from this glossary show one way in which naming conventions can
be implemented within an installation. In this glossary, the application designers have
determined that certain words are always to be abbreviated and others are never to be
abbreviated; the majority of words are to be spelled out completely whenever possible.
When stored on the data dictionary, the glossary is readily available as a reference
guide for programmers and developers.

ADD CLASS NAME IS WORD

CLASS TYPE IS ENTITY.

ADD WORD ABEND ABBREVIATED NEVER

ADD WORD ABSOLUTE ABBREVIATED NEVER

ADD WORD ACCEPT ABBREVIATED NEVER

ADD WORD ACCOUNT ABBREVIATED SOMETIMES ABBR ACCT

ADD WORD ACCRUAL ABBREVIATED NEVER

ADD WORD ACCUMULATE ABBREVIATED SOMETIMES ABBR ACCUM

ADD WORD ACKNOWLEDGE ABBREVIATED SOMETIMES ABBR ACK

ADD WORD ADMINISTRATION ABBREVIATED ALWAYS ABBR ADMIN

ADD WORD ADDRESS ABBREVIATED ALWAYS ABBR ADDR

 .

 .

 .

 .

 .

 .

ADD WORD YIELD ABBREVIATED SOMETIMES ABBR YLD

ADD WORD YTD ACRONYM 'YEAR TO DATE'

ADD WORD YY ABBREVIATED NEVER

ADD WORD ZERO ABBREVIATED NEVER

ADD WORD ZONE ABBREVIATED NEVER

Information entities can use the following naming conventions:

■ Database elements can be established using approved names from the glossary and
can be further defined with synonyms. Element names should have a maximum
of 25 characters. The following example lists an element and three synonyms:

4-6 CA-ADS User Guide

4.3 Naming database information entities

EMPLOYEE-CODE

DB-REC-EMPLOYEE-CODE

MAP-EMPLOYEE-CODE

WORK-EMPLOYEE-CODE

■ Database Records can be composed of approved, usable names (for example,
EMPLOYEE). Records can be given greater flexibility with the addition of suf-
fixes. The following example lists employee records with identifying suffixes:

EMPLOYEE-?6??

EMPLOYEE-25??

EMPLOYEE-6359

In CA-ADS process source, as well as in COBOL, CA-CULPRIT, and map
source, the elements can be referenced by the element name plus the suffix,as
follows:

EMPLOYEE-CODE-6359

■ Map work records are composed of the map name followed by the suffix
-MAP-RECORD, as in the following example:

CEMMILIS-MAP-RECORD

Elements in the map record utilize the prefix MAP- and the element name, as
follows:

MAP-OFFICE-CODE

If the map needs more than one work record, a number is added to the word
MAP, as follows:

CEMMILIS-MAP2-RECORD (the second map record)

MAP2-OFFICE CODE (a record element from the second record)

■ Dialog work records are composed of the dialog name followed by the suffix
-WORK-RECORD as in the following example:

CEMDULIS-WORK-RECORD

Elements in the dialog work record utilize the prefix WORK- and the element
name, as follows:

WORK-OFFICE-CODE

If the dialog needs more than one work record, a number is added to the word
WORK, as follows:

CEMDILIS-WORK2-RECORD (the second dialog work record)

WORK2-OFFICE CODE (a record element from the second record)

■ Set names are established by concatenating an abbreviation of the owner record (a
7-character maximum) with that of the member record (a 6-character maximum),
as follows:

EMPL-SKILL

Chapter 4. Naming Conventions 4-7

4-8 CA-ADS User Guide

 Chapter 5. Performance Considerations

5.1 Overview . 5-3
5.2 System generation parameters . 5-4

5.2.1 Allocating primary and secondary storage pools 5-5
5.2.2 Relocating resources . 5-6
5.2.3 Specifying the number of online tasks and external request units 5-7

5.3 Resource management . 5-9
5.3.1 Monitoring tools . 5-10
5.3.2 Task processing support . 5-11
5.3.3 Variable storage pool . 5-11
5.3.4 Program pool storage . 5-12
5.3.5 Database locks . 5-12
5.3.6 Disk I/O . 5-13
5.3.7 Terminal I/O . 5-13
5.3.8 CPU usage . 5-14
5.3.9 Conserving resources . 5-14

Chapter 5. Performance Considerations 5-1

5-2 CA-ADS User Guide

5.1 Overview

 5.1 Overview

The performance of the CA-ADS runtime system is dependent upon a number of
factors, such as the size of the CA-IDMS/DC or CA-IDMS/UCF (DC/UCF) system,
the number of applications being run concurrently, and the number of users for a given
application. Rather than attempting to give definitive instructions for the improvement
of performance, this section discusses the following aspects of the CA-ADS runtime
system:

■ Parameters affecting performance

 ■ Resource management

Each of these considerations is discussed separately below.

Chapter 5. Performance Considerations 5-3

5.2 System generation parameters

5.2 System generation parameters

The CA-ADS system is generated by submitting ADSO, PROGRAM, and TASK state-
ments to the DC/UCF system generation compiler. Optionally, the KEYS statement is
used to define site-specific control key functions. These statements are used as
follows:

■ The ADSO statement includes parameters that define the CA-ADS runtime envi-
ronment, as follows:

– The task code (ADS) that initiates the CA-ADS runtime system

– The mainline dialog that can begin executing immediately

– The maximum number of dialog levels that can be established by each appli-
cation

– The disposition of record buffers during a pseudo-converse (that is, whether
they can be written to the scratch area of the data dictionary)

– The size of the primary and secondary record buffers

– The AUTOSTATUS facility that handles errors generated by database, logical
record, or queue and scratch record processing

– The Status Definition Record that associates status codes returned by data-
base, logical record, and queue and scratch record access with condition
names

– The treatment of numeric values placed into alphanumeric fields by arithmetic
and assignment commands

– The display of the Dialog Abort Information screen when the runtime system
detects an abend condition in an executing dialog

– Whether dialog statistics will be collected

– How CA-ADS is to perform a mapout when a dialog's map is already dis-
played as a result of a previous mapout in a pageable map

– Whether record buffer blocks are to be compressed across a pseudo-converse
when they are retained in the storage pool

– How the amount of storage to be allocated for record buffer blocks is to be
determined

■ The PROGRAM statement defines the following CA-ADS components as
DC/UCF programs:

– The ADSORUN1, ADSORUN2, and ADSOMAIN runtime system programs

– The system maps (the menu map, runtime message map, and maps for each of
the application and dialog compiler screens)

– The application and dialog compiler programs (ADSA and ADSC)

– CA-ADS dialogs (an optional parameter if null Program Definition Elements
(PDEs) are defined in the SYSTEM statement)

5-4 CA-ADS User Guide

5.2 System generation parameters

■ The TASK statement defines the following task codes:

– ADS and ADS2 to initiate the runtime system

– ADSA to initiate the application compiler

– ADSC to initiate the dialog compiler

– ADSR to initiate the runtime system when returning from a linked user
program

For detailed syntax and examples of the sysgen statements, refer to the CA-IDMS
System Generation manual.

The following discussion highlights selected aspects of system generation that have
particular import when considering system performance in an CA-ADS environment.
These features are as follows:

■ Allocating primary and secondary storage pools

 ■ Relocating resources

■ Specifying the number of online tasks and external request units

Each of these considerations is discussed separately below.

5.2.1 Allocating primary and secondary storage pools

Record Buffer Block: The runtime system allocates and initializes record buffers
for use by executing dialogs. When an application is initiated, CA-ADS allocates a
Record Buffer Block (RBB) from the DC/UCF storage pool to hold the subschema,
map, and work records accessed by the dialogs in the application thread. The RBB
must be large enough to accommodate the largest of these records.

There is one primary RBB for each application. CA-ADS allocates a secondary RBB
when the RBB becomes full during execution of the application or does not have
enough remaining space to hold a record. Additional secondary RBBs can be allo-
cated by the CA-ADS runtime system as necessary.

The data communications administrator (DCA) can specify the size of the primary and
secondary RBBs with the PRIMARY POOL and SECONDARY POOL parameters of
the ADSO statement. When allocating the primary and secondary storage pools, the
DCA needs to consider the size and number of the records used by the application as
well as the header records maintained by the buffers.

The primary RBB should be large enough to satisfy the records associated with the
most-frequently used dialogs. The secondary RBB should be large enough to accom-
modate the largest record.

Alternatively, the runtime system can be directed to calculate the size of the RBBs for
an application or dialog and to use the calculated size when acquiring storage space for
the RBBs. Use the calculated size in systems where there is a high number of records
and storage space is a concern.

Chapter 5. Performance Considerations 5-5

5.2 System generation parameters

The following diagram shows the structure of the Record Buffer Block. Each record
buffer contains a 24-byte header to keep track of available space. For each record in
the pool, CA-ADS maintains a record header (RBE) that requires 44 bytes of storage
for database records and 56 bytes of storage for logical records. There is also a header
for each element of a logical record. All records and headers are aligned on
doubleword boundaries. Each buffer pool must be large enough to accommodate the
largest subschema, map, work, database, or logical record used by a dialog in the
application.

 5.2.2 Relocating resources

The fast mode threshold is used by the CA-ADS runtime system in conjunction with
the RESOURCES ARE FIXED specification to determine whether record buffers are
written to disk or kept in main storage across a pseudo-converse. If the total size of
all record buffers, in bytes, exceeds the fast mode threshold and RESOURCES ARE
FIXED has been specified, the record buffers are written to disk; otherwise, the record
buffers are kept in the storage pool. Storage used for currency blocks, CA-ADS ter-
minal blocks (OTBs), OTB extensions, and variable dialog blocks (VDBs) is not eli-
gible for writing to scratch.

Size of the threshold: The size of the threshold is a site-specific determination
that is based on the availability of general resources versus the amount of available
storage. I/Os for DC/UCF journaling and CPU cycles for record locking are used

5-6 CA-ADS User Guide

5.2 System generation parameters

when record buffers are written to the scratch/queue areas. Therefore, when buffers
exceed the fast mode threshold, the increased use of resources will slow down the
transaction response time. On the other hand, if buffers are always under the threshold
(that is, if the fast mode threshold is high), more memory is required.

Alternative method: Alternatively, the DCA can specify that storage used for
RBBs and statistics control blocks is always written to scratch across a pseudo-
converse, regardless of the relocatable threshold that has been defined for primary and
secondary storage pools. In this situation, other storage (that used for currency blocks,
OTBs, OTB extensions, and VDBs) is written to scratch across a pseudo-converse only
when the relocatable threshold is exceeded.

5.2.3 Specifying the number of online tasks and external request
units

The MAXIMUM TASKS and MAXIMUM ERUS parameters specify the maximum
number of user tasks (online tasks) and external request units that can be active con-
currently. The size of these parameters can affect the amount of time spent by
DC/UCF in searching the queues for tasks that are waiting to be executed.

Considerations: The number of online tasks and external request units that should
be specified is a site-specific determination and is dependent upon factors such as the
number of tasks processed each hour in a particular environment. When setting the
MAXIMUM TASKS and MAXIMUM ERUS parameters on the SYSTEM statement,
the following statistics should be considered:

■ Increasing the MAXIMUM TASKS or MAXIMUM ERUS parameters by one (1)
causes virtual storage requirements to increase as shown below:

Note that a value larger than the default (420) should be specified for the
STACKSIZE when using CA-ADS. If the STACKSIZE is at 420 and two tasks
exceed stacksize and go into abend storage at the same time, the system will abort
with an abend code of 3995.

Resource Size of resource Total

TCE 248 bytes 248 bytes

STACKSIZE 320 words 1,280 bytes

DCE 40 bytes 40 bytes

ECB * 3 8 bytes 24 bytes

DPE * 20 16 bytes 320 bytes

RCE * 15 16 bytes 240 bytes

RLE * 25 8 bytes 200 bytes

Total increase per
task

2,352 bytes

Chapter 5. Performance Considerations 5-7

5.2 System generation parameters

■ The following DC/UCF system parameters should be increased as specified for
every increment of 1 in the size of MAXIMUM TASKS or MAXIMUM ERUS:

Parameter Amount increased

ECB LIST 3

DPE COUNT 20

RCE COUNT 15

RLE COUNT 25

5-8 CA-ADS User Guide

5.3 Resource management

 5.3 Resource management

In designing applications, consideration must be given to the efficient management of
system resources. The management of resources such as the database, the storage
pool, and the program pool storage affects the performance of online applications since
many users may require access to these resources simultaneously.

The following diagram shows the resources used by an application in a non-SQL envi-
ronment while a task is active and after the task has terminated.

When a task is active:

Chapter 5. Performance Considerations 5-9

5.3 Resource management

After the task has terminated:

The remainder of this section discusses methods that can be used to monitor the
resource consumption of an application and ways in which to utilize available
resources efficiently.

 5.3.1 Monitoring tools

As with any task running under DC/UCF, the major resources to be monitored in an
CA-ADS environment are as follows:

■ Task processing support

■ Variable storage pool

■ Program pool storage

 ■ Database locks

■ I/Os (disk and terminal data transmission)

 ■ CPU cycles

Each of these resources can be monitored with data dictionary reports and DC/UCF
master terminal functions, as discussed below.

5-10 CA-ADS User Guide

5.3 Resource management

5.3.2 Task processing support

The following diagram shows the resources in use while a task is active (left diagram)
and those in use after the task (right diagram) terminates.

 Example:

Displaying internal resources: The following DC/UCF master terminal functions
display the internal resources used to support task processing:

■ DCMT DISPLAY ACTIVE TASK displays global statistics on active tasks and
information on each active task thread.

■ DCMT DISPLAY STATISTICS SYSTEM displays information about the system
including the peak task control element (TCE) stack; and the maximum number of
resource link elements (RLEs), resource control elements (RCEs), and deadlock
prevention elements (DPEs) used by the tasks.

5.3.3 Variable storage pool

The following sysgen reports (CREPORTS) and DCMT functions can be used to
monitor the use of the storage pool:

■ CREPORT 25 verifies the size of the storage pool and indicates whether storage
protection has been enabled for the system.

Chapter 5. Performance Considerations 5-11

5.3 Resource management

■ DCMT DISPLAY ACTIVE STORAGE shows the current fragmentation of the
storage pool.

■ DCMT DISPLAY LTERM RESOURCES indicates which terminals are active and
own resources.

■ DCMT DISPLAY LTERM lterm-id-a RESOURCES displays the specific
resources (and the addresses of those resources) owned by the named terminal.

■ DCMT DISPLAY MEMORY hex-address-a displays an actual resource as it
appears in memory.

■ CREPORT 40 supplies the current parameters specified in the ADSO statement.

The CA-IDMS Reports manual describes CREPORTS; the CA-IDMS System Tasks and
Operator Commands manual details the master terminal functions available to monitor
system resources.

Information from the above displays and reports can be used to calculate the number
of users the system can currently support, assuming various storage pool sizes.

5.3.4 Program pool storage

The following DCMT commands can be used to provide information on the program
pool:

■ DCMT DISPLAY ACTIVE PROGRAMS displays the following:

– Statistics on program pool usage, including the total number of pages and
total number of bytes in the pool; the number of loads to the program pool;
the number of pages loaded; and the number of load conflicts

– Information on currently active programs including the program name, type,
and version number; count of users currently using the programs; size of the
program in K bytes; the number of times the program was called; and the
number of times the program was loaded into the program pool

– The program pool page allocation map that shows which pages are not in use;
which pages are in use by one program; and which pages are in used by more
than one program

■ DCMT DISPLAY ACTIVE REENTRANT PROGRAMS displays the above infor-
mation for the reentrant program pool and the active reentrant programs. If no
reentrant pool is defined, the standard program pool is shown.

 5.3.5 Database locks

The DCMT DISPLAY RUN UNIT and OPER WATCH DB RUN UNITS commands
can be used to show the number of database locks being requested for a particular run
unit. The number of database locks maintained by a DC/DC system has considerable
impact on CPU usage.

These locks are specified at sysgen time by the RULOCKS and SYSLOCKS parame-
ters of the SYSTEM statement.

5-12 CA-ADS User Guide

5.3 Resource management

For a discussion of database locks, refer to the CA-IDMS Database Design. For infor-
mation on factors to consider when preparing the SYSTEM statement, refer to the
CA-IDMS System Generation manual.

 5.3.6 Disk I/O

The following reports can be used for monitoring disk I/O:

■ JREPORT 004 shows the average number of I/Os to disk for a given program.

■ DCMT DISPLAY RUN UNITS or OPER W DB RU shows if any run units are
waiting for a journal buffer (as indicated by a run unit status value of IUH). IUHs
occur most frequently when the fast mode threshold is set too low.

For information on the JREPORTS (journal reports), refer to the CA-IDMS Reports
manual.

 5.3.7 Terminal I/O

Monitoring steps: The following steps can be taken to monitor terminal I/Os:

1. Run the mapping utility (RHDCMPUT) for a report on a specific map. This
report will display a picture of the map and the attributes currently assigned to the
map. The report will also indicate whether BACKSCAN is enabled for any
mapping fields. If BACKSCAN is in effect and the NEWPAGE option on the
ADSO statement has been selected, extraneous data from the previous mapout
may be left on the screen when a map is redisplayed. It is advantageous to have
NEWPAGE in effect, however, because this option increases runtime efficiency by
reducing the number of data fields that need to be transmitted to the terminal. For
more information about the NEWPAGE feature, refer to the CA-ADS Reference.

2. Use DCMT VARY PTERM pterm-id TRACE ALLIO FF to cause the datastream
being transmitted to the terminal to be written to the log as well.

3. Use SHOWMAP map-name in conjunction with DCUF USERTRACE to cause
the datastream of a particular map to be traced.

4. Use DCMT VARY PTERM pterm-id TRACE ALLIO OFF to turn off the trace,
suppressing any further transmission of datastreams to the log.

5. Run the print log utility (RHDCPRLG) to show the actual trace. Specify the fol-
lowing parameters in the utility JCL:

PRINT ALL FOR ALL

FROM time ON date

TO time ON date

Transmission times can be calculated by analyzing the length of the datastream.

Chapter 5. Performance Considerations 5-13

5.3 Resource management

 5.3.8 CPU usage

To monitor CPU cycles and obtain CPU usage by task, the system can be instructed to
collect task statistics. It is advisable not to request task statistics unless there is a
demonstrated need as they require considerable overhead and generate a large volume
of data. Task statistics are requested by specifying TASK STATISTICS WRITE or
TASK STATISTICS COLLECT on the SYSTEM statement. The statistics are written
to the DC/UCF log.

>> For detailed information on collecting task statistics, refer to CA-IDMS System
Operations.

 5.3.9 Conserving resources

Resources can be conserved as follows:

■ Enable storage protection — Storage protection is enabled by specifying
PROTECT in the SYSTEM statement at system generation. The benefits of using
storage protection are as follows:

– CPU overhead is reduced because there are shorter chains for the system to
walk.

– Resources are clustered.

To avoid SVC overhead, it is advisable to enable storage protection (that is,
specify PROTECT) on the SYSTEM statement and to disable storage protection
(that is, specify NOPROTECT) on the PROGRAM statement.

■ Specify buffer sizes in multiples of 4084 bytes — The 4084-byte limit represents
a multiple of 4K (4096 bytes) less the 12 bytes for pointer information and task
ID address, as shown below:

If a 4K page were selected, storage would have to be taken from two contiguous
pages. The benefits of placing a 4084-byte limit on the amount of storage
acquired are as follows:

– Fragmentation of the storage pool is reduced when only one page is
requested. Space is allocated in contiguous frames for a particular request. It
is easier for the system to find one page rather than two contiguous pages.

– Less CPU overhead is required because partial pages do not have to be calcu-
lated or scanned. When the system finds a request for a multiple of 4K (less
the pointer information), it will immediately scan the pool looking for entirely
empty pages, thus saving overhead.

■ Limit the size of subschemas — Subschemas should be specified to the require-
ments of the application. The size of the currency block is directly related to the

5-14 CA-ADS User Guide

5.3 Resource management

storage requirements of the variable subschema storage block (VB50) used at
runtime; the runtime system maintains currency tables for every record, set, and
area accessed by the dialog. Therefore, it is worthwhile to make subschemas as
streamlined as possible.

■ Limit the number of dialog levels — The MAXIMUM LINKS parameter of the
ADSO sysgen statement specifies the maximum number of dialog levels that can
be established by each respective CA-ADS application; keep this parameter low.
A well designed application has as few levels as possible. The number of levels
should be limited because, for each level established in the application, kept
storage is acquired for the Variable Dialog Block (VDB) and the currency block.
Storage established at a particular level is not released until control is passed
upward.

To limit the number of levels established, use the TRANSFER command when-
ever possible; build the application horizontally (that is, pass control laterally)
rather than vertically.

■ Control the size of the application — The size of dialog premap and response
processes, the number of data fields included in a map, the size of the
subschemas, and the size of database, map, and work records affect the perform-
ance of the CA-ADS runtime system. The actual number of I/Os required to load
a complete program is dependent upon the size of a page in the DDLDCLOD
area, the amount of overflow that will be encountered to load that record, and the
size of the actual program being loaded. Therefore, the following benefits are
realized by minimizing the size of programs:

– A reduction in the work required to load a small program as compared to a
large program

– A reduction in time spent loading a particular program in the program pool or
reentrant pool

– A reduction in time spent waiting for space in the program pool or reentrant
pool

Under DC/UCF, the term program refers to CA-ADS dialogs, tables, maps,
subschemas, and online and batch programs.

■ Make frequently called programs resident — A frequently called program (such as
ADSOMAIN) is virtually a resident in the program pool or the reentrant pool.
The program should be made resident because the operating system can page more
rapidly than IDMS-DC/UCF can read in a page from the DDLDCLOD area. By
making the program resident, the operating system, rather than DC/UCF, will be
requested to bring the page in core. Additionally, the program and resident pool
will be less fragmented when a frequently used program is made resident. A
program can be specified as resident on the PROGRAM statement at system gen-
eration.

■ Free the resources of an inactive terminal — The resource timeout facility can be
activated on the SYSTEM statement at system generation, specifying the amount
of time a terminal is permitted to be inactive (that is, have no task executing)
before all resources owned by the terminal are deleted and control is returned to
the system. Because longterm storage resources are associated with a terminal

Chapter 5. Performance Considerations 5-15

5.3 Resource management

even though a program is not active, freeing those resources will free space for
other users of the system. This is particularly important if longterm locks are
being implemented.

5-16 CA-ADS User Guide

Chapter 6. Overview of CA-ADS Application
Development

6.1 Introduction . 6-3
6.2 Application development . 6-4
6.3 Application development tools . 6-7

Chapter 6. Overview of CA-ADS Application Development 6-1

6-2 CA-ADS User Guide

6.1 Introduction

 6.1 Introduction

Computer Associates' Application Development System (CA-ADS) enables you, as an
application developer, to develop and execute online applications that query and update
an CA-IDMS/DB database or VSAM file.

Development tools: The CA-ADS application development environment features
menu-driven development tools that simplify and speed the definition of applications.
Components developed by using CA-ADS development tools are modular and can be
reused in one or more applications.

Process language: To enable an application to access the database, perform calcu-
lations, and perform other customized processing, you use the high-level process lan-
guage provided by CA-ADS. Easily recognizable commands (such as DISPLAY)
greatly simplify many frequently performed operations. Modules written in this
process language can be added to an application whenever processing is required.

CA-ADS is fully integrated with Computer Associates' Application Development
System/Batch (CA-ADS/Batch). Developers who use CA-ADS/Batch to define batch
applications can use the same development tools used by CA-ADS developers.

>> For more information on CA-ADS/Batch, see the CA-ADS Batch User Guide.

Additionally, CA-ADS applications can accommodate components developed by using
the CA-IDMS Automatic System Facility (ASF). Execution of CA-ADS applications
can be traced and debugged by using the CA-IDMS online debugger or
CA-ADS/ALIVE. Runtime performance and resource usage of an application can be
tracked by using the CA-IDMS Performance Monitor.

This chapter introduces CA-ADS by discussing:

■ Application development in the CA-ADS environment

■ Application development tools that will be discussed in this user's guide

Chapter 6. Overview of CA-ADS Application Development 6-3

6.2 Application development

 6.2 Application development

Flexible application development environment: CA-ADS provides a flexible
application development environment. You can define application components in
whatever order makes the most sense given the application you need to define. For
example, you can define the executable structure, screen displays, and runtime flow of
control for the entire application before you define any modules of process code for
the application. Alternatively, you can fully define all components, including modules
of process code, for a subset of the application before even beginning to define com-
ponents for the remaining application.

Methodology: This manual illustrates CA-ADS concepts by showing you how they
apply to the definition of a sample application. The methodology presented here
shows you one way to efficiently develop a new application by using CA-ADS devel-
opment tools. At your site, other application development strategies may be employed.

Structure diagram: A useful first stage in developing a new CA-ADS application
is to develop a structure diagram based on the specifications for the application.
Drawing a structure diagram for an application is useful because:

■ The application's functional requirements are clarified before any specific
development occurs. Potential design and development misunderstandings are
often caught in the process of developing a structure diagram.

■ The structure diagram is a development resource for application developers
throughout the development cycle. While developing application components,
the developer can use the structure diagram as a reminder of how each component
relates to the entire application. CA-ADS application components fit directly into
an application structure diagram.

Sample application: The structure diagram for a small Personnel application is
shown below. This application allows users to maintain information on departments
and users. Related data, such as office addresses and insurance information, is also
collected and stored by using this application. You will develop the Department
portion of this application in this manual.

Functions: As shown in this sample structure diagram, the application structure is
made up of functions. Each function is related to work performed by the end user on
a single screen. For example, the Personnel application includes functions such as
ADDDEP, MODDEP, and DELDEP, which allow you to add, modify, and delete
department records in the database. Menu functions, such as MAINMENU and
DEPTMENU, allow you to select other functions in the application. Other functions
allow you to return to previous menus (functions BACK and TOP) and to exit from
the application (function EXIT).

To reduce repetition of information, this manual presents steps for developing only the
Department portion of this sample Personnel application. Remaining portions of the
Personnel application can be added to the Department application at any time. The

6-4 CA-ADS User Guide

6.2 Application development

strategy of defining different portions of applications at different times is particularly
useful when developing large applications.

Defining the application: As soon as the application structure diagram is com-
pleted and approved, you can begin to define the application in the data dictionary. In
this manual, you will define the sample Department application in two steps:

1. You will develop a prototype application based on the approved structure
diagram for the application.

The CA-ADS runtime system simplifies the definition of prototypes by automat-
ically performing many basic processing activities, such as displaying a screen.
You can define a prototype without writing any process logic. Additionally, you
can execute a prototype application before the database is developed.

2. You will enhance the tested and approved prototype by adding process logic.

Advantages: Advantages to developing a prototype application before defining any
process logic for the application include:

■ Timely feedback — End users and other interested people can execute the com-
pleted prototype application to see how well screens meet their needs and to verify
that flow of control from function to function makes sense based on their job
responsibilities.

Chapter 6. Overview of CA-ADS Application Development 6-5

6.2 Application development

■ Ease of modification — Improvements suggested by end users can be included in
the prototype application quickly because you do not have to modify any process
logic or database definitions.

■ Efficient use of development time — The prototype application developed for
early testing is itself developed into the final production application. Components
created for the prototype are all used in the final application.

6-6 CA-ADS User Guide

6.3 Application development tools

6.3 Application development tools

CA-ADS applications are developed and executed by using a variety of online tools.
The following tools are used to develop the sample Department application.

■ CA-ADS application compiler (ADSA) — Used to define the executable struc-
ture of an application, based on the structure diagram developed for the applica-
tion.

■ CA-ADS dialog compiler (ADSC) — Used to define CA-ADS dialogs, which
handle most runtime interactions with the end user.

■ Online mapping facility (MAPC) — Used to define maps, which establish pre-
formatted screens. Dialogs use maps to display and allow end users to input
information.

■ Integrated Data Dictionary (IDD) menu facility — Used to create data defi-
nitions and modules of process code.

■ Runtime system — Used to execute CA-ADS applications at any stage in the
application's life cycle.

As an application developer, you can execute the application at any time in the devel-
opment cycle by using the runtime system. Additionally, end users execute the appli-
cation by using the runtime system.

Components defined by using ADSA, ADSC, MAPC, and the IDD menu facility are
all stored in the data dictionary.

You can access any of the above development tools from CA-IDMS/DC, the
CA-IDMS teleprocessing (TP) monitor, or CA-IDMS/UCF, the teleprocessing monitor

Chapter 6. Overview of CA-ADS Application Development 6-7

6.3 Application development tools

interface. Additionally, you can transfer directly among ADSA, ADSC, MAPC, and
the IDD menu facility by using the transfer control facility (TCF).

Transfer control facility You can use TCF at any time during an application devel-
opment session to suspend one development tool and transfer to another.: For
example, while using ADSC to define a dialog, you might remember that the related
map definition is still incomplete. You can suspend your ADSC session, transfer
directly to MAPC to complete the map, and then transfer back to ADSC to resume
your suspended dialog-definition session.

Task codes: To invoke a development tool from CA-IDMS/DC or CA-IDMS/UCF
(DC/UCF), or TCF, specify the task code associated with the tool. A task code is a
unique invocation name defined for a development tool at system generation time.
Sample task codes for CA-ADS development tools are presented in the table below.
The task codes shown allow you to operate under TCF and, therefore, switch from tool
to tool.

Note: If you are not operating under TCF, you cannot switch to another tool without
first returning to DC/UCF.

Task codes can vary from site to site.

Development tool Sample task
code

Site task code

CA-ADS application compiler
(ADSA)

ADSAT

CA-ADS dialog compiler
(ADSC)

ADSCT

IDD menu facility IDDMT

Online mapping (MAPC) MAPCT

6-8 CA-ADS User Guide

Chapter 7. Defining an Application Structure Using
ADSA

7.1 Introduction . 7-3
7.2 Overview . 7-4
7.3 Instructions . 7-8

7.3.1 Step 1: Invoke ADSA . 7-9
7.3.2 Step 2: Name the application . 7-11
7.3.3 Step 3: Specify basic information . 7-13
7.3.4 Step 4: Define application response and function relationships 7-15
7.3.5 Step 5: Further define the application responses 7-18
7.3.6 Step 6: Further define the application functions 7-22

7.3.6.1 Dialog functions . 7-24
7.3.6.2 Menu functions . 7-29

7.3.7 Step 7: Define a task code . 7-32
7.3.8 Step 8: Compile the application . 7-33
7.3.9 Exit from ADSA . 7-34
7.3.10 Optionally execute the application 7-35

7.3.10.1 Invoke the application . 7-35
7.3.10.2 Test current features . 7-36

7.4 Summary . 7-38

Chapter 7. Defining an Application Structure Using ADSA 7-1

7-2 CA-ADS User Guide

7.1 Introduction

 7.1 Introduction

As an application developer, you can begin defining application components as soon as
the application structure diagram is complete. You can use CA-ADS development
tools to define a preliminary, or prototype version of the application early in the
application development cycle. Application developers and users can execute the pro-
totype to test and suggest improvements to the application.

As soon as the prototype application is approved, definitions that make up the applica-
tion can be enhanced to perform all processing required by the final production appli-
cation. In this part of the manual, "Developing the Prototype," you will develop a
prototype Department application. Then you will take this prototype application and
develop it into a fully functional application.

The first step in defining a prototype application in the data dictionary is to define the
application's structure, based on the structure diagram, by using the CA-ADS applica-
tion compiler (ADSA). The structure of an application specifies how a user moves
from function to function when executing the application.

In this chapter, you will begin defining the sample Department application introduced
in Chapter 6, “Overview of CA-ADS Application Development” on page 6-1. This
chapter includes:

■ An overview of developing an application structure in the CA-ADS environment

■ Instructions for defining the sample Department application

■ A summary of what you've accomplished in this chapter

Chapter 7. Defining an Application Structure Using ADSA 7-3

7.2 Overview

 7.2 Overview

Functions: An application is made up of the various functions necessary to do the
work of the application. Each function represents a unit of work in the application.
For example, different functions in the Department application:

■ Display a menu to help the user navigate through the application

■ Perform functional processing, such as allowing the user to add or modify a
department record

■ Perform standard system activities, such as returning control to the application's
main menu or exiting the user from the application

Responses: The development team must arrange application functions so that users
can easily get from one function to another. The team defines paths that a user can
take between functions. Each path is called a response. At runtime, the user can
select from among available responses to get from one function to another.

Application structure: The arrangement of functions and responses constitutes the
structure of an CA-ADS application. The diagram below shows the structure of the
sample Department application. This diagram includes both functions and responses
because you need to define both types of application components. The structure
diagram for an application serves as a blueprint for application development. Func-
tions and responses in this sample application will allow users to add, modify, and
delete information about departments.

Note: In this sample application, you can substitute your initials for the XXX in the
task code, application name, dialog names, etc.

7-4 CA-ADS User Guide

7.2 Overview

Types of functions: Most functions in an CA-ADS application, including the
Department application, are menu, dialog, or system functions.

Menu function: A menu function displays a menu screen to an end user.

For example, the DEPTMENU function in the Department application is a menu func-
tion. The menu screen displayed by DEPTMENU lists the ADD, MOD, DEL, and
EXIT responses. At runtime, the user can select any of these responses from the
DEPTMENU menu screen. To define a menu function, all you have to do is specify
where the menu belongs in the application structure. CA-ADS provides predefined
screen formats and processing logic for menu functions.

Dialog function: A dialog function typically displays a screen that supplies infor-
mation to or requests information from a user. Based on entries made by the user, the
function performs processing activities such as data retrieval and update. As a devel-
oper, you define CA-ADS programs, called dialogs, to handle runtime operations for
dialog functions.

In the sample Department application, functions ADDDEP, MODDEP, and DELDEP
are dialog functions. The user can use ADDDEP to add a new department record,
MODDEP to modify an existing department record, and DELDEP to delete a depart-
ment record from the database.

Chapter 7. Defining an Application Structure Using ADSA 7-5

7.2 Overview

System function: A system function displays a screen and/or performs operations
that are common to most applications.

For example, the POP system function in the sample Department application returns
the user to the most recently used menu screen (in this case, the DEPTMENU menu).
The QUIT system function allows the user to exit from the application at any point.
To define a system function, all you have to do is specify where the function belongs
in the application structure. CA-ADS provides all necessary logic and screens for
system functions.

Paths between functions: Responses define paths between functions. At
runtime, a user moves from one function to another by selecting a response that leads
from the first function to the next. For example, a user of the Department application
can get from DEPTMENU to ADDDEP by entering a nonblank in the selection field
to the left of the ADD response on the menu.

The user selects a response either by typing its name (for example, ADD) in a special
response field on the screen or by pressing the function key (for example, [PF4]) asso-
ciated with the response. Default responses can be defined for functions, making it
easier for users to get to frequently used functions. The structure diagram shown
above gives the name and function key for each response in the sample Department
application.

Worksheets: A typical application has numerous responses and functions. Some
responses and functions may be available in several places in the application. To help
keep track of the responses and functions in an application structure, some sites
develop a worksheet of responses and functions for the application. A standard work-
sheet that documents each response and function is especially useful when you are
defining the application structure in the data dictionary. Filling out a worksheet for
application responses and functions can simplify the application development process
and can also provide documentation of application development decisions.

A sample worksheet for the Department application is shown below.

Task codes: To enable users to access an application, you define entry points into
the application structure. You establish entry points for CA-ADS applications by
defining task codes. When you define a task code, you associate it with a specific
application function. At runtime, you use the task code to begin executing the applica-
tion at the associated function. Both application developers and users invoke applica-
tions by using task codes.

For example, the XXXDEPT task code is associated with the DEPTMENU function in
the sample Department application shown previously. A user can invoke the applica-
tion from a CA-IDMS/DC or CA-IDMS/UCF (DC/UCF) system by specifying
XXXDEPT and pressing [Enter]. The DEPTMENU menu screen is the first application
screen shown to the user.

7-6 CA-ADS User Guide

7.2 Overview

Multiple task codes: You can define more than one task code for an application.
Defining multiple task codes, or entry points, is particularly useful for very large appli-
cations. For example, if the sample Department application is incorporated into a
large, company-wide application, users who only need to use department information
can use the XXXDEPT task code to enter the application at the DEPTMENU function.
Clerks in the Accounts Receivable office can use a different task code to enter the
company-wide application at a menu that lists billing and customer functions.

Note: In the sample application, you can substitute your initials for the XXX in the
task code.

Chapter 7. Defining an Application Structure Using ADSA 7-7

7.3 Instructions

 7.3 Instructions

As a member of the development team, you use the CA-ADS application compiler
(ADSA) to define an executable structure for an application. ADSA screens lead you
through the steps necessary to define the functions, responses, and task codes that
make up the application's structure.

When you have defined the application structure, you use ADSA to create a load
module for the application. When you use ADSA screens to define the application
structure, you are implicitly coding the flow of control for the application.

ADSA screens: ADSA screens are designed in accordance with the CUA definition
of SAA. All screens have:

■ A title at the top

■ A data entry area

■ PF keys at the bottom

Menu screens also have an action bar, a message area, and a command line.

R S
- Add Modify Compile Delete Display Switch

 .__.

 -

 - CA-ADS Application Compiler

 - Computer Associates International, Inc.

 -

 Application name ________

 Application version . . ____

 Dictionary name ________

 Dictionary node ________

 Screen _ 1. General options

 2. Responses and Functions

 3. Global records

 4. Task codes

 -

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Steps: To define the sample Department application structure, you will perform the
following steps:

 1. Invoke ADSA

2. Name the application

3. Specify basic information about the application

7-8 CA-ADS User Guide

7.3 Instructions

4. Define application response and function relationships

5. Further define the application responses

6. Further define the application functions

7. Define the application task code

8. Compile the application (creating an application load module)

After you finish defining the Department application structure, you can exit from
ADSA and optionally execute the application to test out the definitions that you have
made. If you need additional information at any time about the use of ADSA, see
"Using ADSA" in Appendix B.

Note: Only the menu access can be tested until prototype maps and dialogs are
created.

The following diagram shows an overview of the flow and structure of ADSA.

Note: This overall structure applies to the MAPC and ADSC compilers as well as to
ADSA.

 7.3.1 Step 1: Invoke ADSA

To invoke ADSA, you must be signed on to a DC/UCF system. Procedures for
signing on to DC/UCF differ from site to site. If you are not sure how to sign on, ask
other users at your site for help.

Before you invoke ADSA, you may want to establish a default dictionary and/or Dis-
tributed Database (DDS) node for the current definition session under DC/UCF.
Naming a default dictionary is useful if you are working in a multiple-dictionary
environment. Naming a DDS node is useful only if you are working in a distributed
database network.

At some sites, signon profiles for each user establish the appropriate default dictionary
and/or node for each user that signs on to CA-IDMS/DC or CA-IDMS/UCF.

If you want to establish defaults for your current DC/UCF session, enter the appro-
priate commands, one at a time, after signing on to DC/UCF:

■ You name a default dictionary by entering:

DCUF SET DICTNAME dictionary-name

■ You name a default DDS node by entering:

DCUF SET DICTNODE node-name

You can display the names of your default dictionary and DDS node at any time by
entering, one at a time:

DCUF SHOW DICTNAME

DCUF SHOW DICTNODE

Chapter 7. Defining an Application Structure Using ADSA 7-9

7.3 Instructions

Specifying the task code for ADSA: When you've signed on to DC/UCF and
optionally established a default dictionary name/node, you can invoke ADSA. To do
this, you enter the task code for ADSAY.

For example, if the task code for ADSA is ADSAT, you can invoke ADSA from
CA-IDMS/DC as shown:

ENTER NEXT TASK CODE:

adsat

Press the ENTER

key to input the --� [Enter]

task code for

 ADSA.

Using the task code ADSAT means that you are invoking ADSA under TCF (the
transfer control facility). Once you are in the ADSA tool under TCF, you can switch
to another application development tool without returning to DC/UCF.

Main menu screen: ADSA begins with the Main Menu screen:

7-10 CA-ADS User Guide

7.3 Instructions

R S
Add Modify Compile Delete Display Switch

 .__.

CA-ADS Application Compiler

Computer Associates International, Inc.

Application name ________

 Application version . . ____

Dictionary name ________

Dictionary node ________

Screen _ 1. General options

2. Responses and Functions

3. Global records

4. Task codes

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

If you are using a teleprocessing monitor other than CA-IDMS/DC, specify the task
code for ADSA in response to the prompt presented by that monitor. For more infor-
mation on task codes for CA-ADS development tools, see 6.3, “Application develop-
ment tools” on page 6-7.

After you invoke ADSA, you can begin defining the application, as described below.

7.3.2 Step 2: Name the application

The ADSA Main Menu screen allows you to specify the name of the application, its
version number, and the dictionary in which it resides. This dictionary name overrides
the current default (if one has been set) and becomes the new default dictionary.

Screen prompts: When you begin an application definition, you typically enter
information after one or more of the following Main Menu screen prompts:

■ Application name — You must supply an application name. The name you
specify must be unique among all program names (including applications, dialogs,
maps, tables, help modules, etc.)

■ Application version — You can optionally type a version number for the applica-
tion after this prompt. When following the example in this manual, use the
default version number of 1.

In a development environment, you might select a different test version number,
such as 5. You would give all test components the same test version number.
You would then set up the system so that, when you execute the application, test
components are executed rather than production components.

>> For more information on maintaining separate test and production definitions
in the same data dictionary, see CA-IDMS System Operations.

Chapter 7. Defining an Application Structure Using ADSA 7-11

7.3 Instructions

■ Dictionary name — A dictionary name may already be displayed after the Dic-
tionary name prompt on your terminal. A sample dictionary name (DEMO) is
shown in examples throughout this manual.

If a dictionary name is not displayed, check with others at your site to find out if
you need to specify one. You typically need to enter the name of your group's
dictionary only when you are not using the default dictionary in a multiple-
dictionary environment.

■ Dictionary node — A dictionary node name may already be displayed after the
Dictionary node prompt on your terminal. Sample definition screens in this
manual do not show a node name.

If a dictionary node is not displayed, check with others at your site to find out if
you need to specify one.

1

You can use the tab key to move the cursor quickly and easily between prompts.
Begin defining your application on the Main Menu screen as shown below\:

R S
Add Modify Compile Delete Display Switch

 .__.

CA-ADS Application Compiler

Computer Associates International, Inc.

Application name xxxappl_

 Application version . . 1___

Dictionary name demo____

Dictionary node ________

W X

Adding the application: To add the application, position the cursor on the Add
item on the action bar and press [Enter]. You can position the cursor on Add by:

■ Pressing [PF10] move to the action bar and then tabbing to Add and pressing
[Enter]

■ Tabbing to Add and pressing [Enter]

■ Typing add on the command line and pressing [Enter]

1 \Sample input that you can enter on screens is shown in lowercase throughout this manual. On the sample Main Menu
screen being shown here, the following sample input is shown in lowercase: a sample application name (XXXAPPL) and
dictionary name (DEMO).

7-12 CA-ADS User Guide

7.3 Instructions

R S
Add Modify Compile Delete Display Switch

 .___.

 Copy from application A-ADS Application Compiler

 Name ________

 Version 1 ter Associates International, Inc.

 F3=Exit

Application name XXXAPPL_

Application version . . . 1

Dictionary name DEMO____

Dictionary node ________

W X

Once you have displayed the Add action item, press [Enter] to add the application to
the dictionary. The action is confirmed.

ADSA redisplays the Main Menu screen with an appropriate message:

■ A confirming message is returned when your definition contains no errors.

■ An error message is returned if ADSA detects any errors. Read the message to
see what problem has occurred. You can type over any fields in error and then
press [Enter] again.

7.3.3 Step 3: Specify basic information

After you specify the name of the application, you can give some basic information
about the Department application on the General Options screen. You reach the
General Options screen by entering 1 next to Screen on the Main Menu.

R S
Add Modify Compile Delete Display Switch

 .___.

CA-ADS Application Compiler

Computer Associates International, Inc.

Application name xxxappl_

 Application version . . 1___

Dictionary name demo____

Dictionary node ________

Screen 1 1. General options

2. Responses and Functions

3. Global records

4. Task codes

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Chapter 7. Defining an Application Structure Using ADSA 7-13

7.3 Instructions

The General Options screen is displayed.

The General Options screen

R S
 General Options Page 1 of 2

 Application name: XXXAPPL Version: 1

Description . . .

Maximum responses 5??

Date format 1 1. mm/dd/yy 2. dd/mm/yy

 3. yy/mm/dd 4. ddd/yy

Execution environment 1 1. Online 2. Batch

Default execution mode. 1 1. Step 2. Fast

Default print destination

Default print class 1

 Enter F1=Help F3=Exit F4=Prev F5=Next F8=Fwd

W X

Screen prompts: You typically enter a description on the General Options screen:

■ Description — You can optionally type a one-line description of your application
after this prompt.

R S
 General Options Page 1 of 2

 Application name: XXXAPPL Version: 1

Description . . . department information application

Maximum responses 5??

Date format 1 1. mm/dd/yy 2. dd/mm/yy

 3. yy/mm/dd 4. ddd/yy

Execution environment 1 1. Online 2. Batch

Default execution mode. 1 1. Step 2. Fast

Default print destination

Default print class 1

 Enter F1=Help F3=Exit F4=Prev F5=Next F8=Fwd

W X

7-14 CA-ADS User Guide

7.3 Instructions

After you specify basic information about the Department application, you can define
the application's responses and functions as described below. Pressing [PF5] from the
General Options screen will bring you to the Response/Function List screen.

7.3.4 Step 4: Define application response and function relationships

The Response/Function List screen is the main ADSA screen. You can reach this
screen by pressing [PF5] from the General Options screen or by entering 2 at the
Screen prompt on the Main Menu.

 Sample screen

R S
 Response/Function List Page 1 of 1

 Application name: XXXAPPL Version: 1

Select Response Assigned Select Function Program/

 (/) name key (/) name/type(1,2,3)C Dialog name

_ ________ _____ _ ________ / _ ________

_ ________ _____ _ ________ / _ ________

_ ________ _____ _ ________ / _ ________

_ ________ _____ _ ________ / _ ________

_ ________ _____ _ ________ / _ ________

_ ________ _____ _ ________ / _ ________

C Type: 1. Dialog 2. Program 3. Menu

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

Each response in an application defines a path from one function to another. You are
going to name the responses and functions and identify the key associated with each
response and the dialog (if any) associated with each function as well as the function
type.

Department application responses and functions: Below are the responses
and functions invoked in the sample Department application. Each response is associ-
ated with a control key and invokes a function. A function can be associated with a
dialog.

Chapter 7. Defining an Application Structure Using ADSA 7-15

7.3 Instructions

Response
name

Key Function
name

Function
type

Dialog name

BACK CLEAR POP Takes the user from ADDDEP,
MODDEP, or DELDEP back to
the DEPTMENU function.

EXIT PF9 QUIT Exits the user from the appli-
cation; EXIT is avail- able from
any function in the Depart- ment
appli- cation

ADD PF4 ADDDEP Dialog XXXDADD Takes the user from the
DEPTMENU function to the
ADDDEP function, which allows
the use to add a new depart-
ment record.

MOD PF5 MODDEP Dialog XXXDUPD Takes the user from
DEPTMENU to the MODDEP
function, which allows the user
to modify an existing depart-
ment record.

DEL PF6 DELDEP Dialog XXXDUPD Takes the user from
DEPTMENU to the DELDEP
function, which allows the user
to delete an existing depart-
ment record.

DEPTMENU Menu Provides a menu

Entering Department application responses and functions: You name each
response and function on the Response/Function List screen as shown below.
Responses and dialog, program, and menu functions need further definition on subse-
quent screens. Select each response and function requiring further definition by
entering a nonblank (nonunderscore) character under Select as you go along.

Note: System functions, such as pop and quit are defined by CA-ADS and do not
require further definition on the part of the developer.

7-16 CA-ADS User Guide

7.3 Instructions

R S
 Response/Function List Page 1 of 1

 Application name: XXXAPPL Version: 1

Select Response Assigned Select Function Program/

 (/) name key (/) name/type(1,2,3)C Dialog name

/ back____ clear / pop _____ / _ ________

/ exit____ pf9__ / quit ____ / _ ________

/ add_____ pf4__ / addep___ / 1 .xxxdad

/ mod_____ pf5__ / moddep___ / 1 .xxxdup

/ del_____ pf6__ / deldep___ / 1 .xxxdup

_ ________ _____ / deptmenu / 3___ ________

C Type: 1. Dialog 2. Program 3. Menu

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

Responses: For each response, enter the response name and name the assigned key.

Functions: For each function, enter the function name and specify the type (1 -
dialog; 2 - program; 3 - menu) and the dialog associated with it, if there is one.

Note: The dialog names can be specified early in the prototyping process; the dialogs
need not exist.

Unique identifier for the response: The combination of the name, key, and asso-
ciated function for a response makes up the unique identifier for the response within
the application definition. Because of this, you can have several different responses
with the same name and/or control key. For example, several ADD responses can be
defined for an application. One ADD response can invoke function ADDDEP.
Another ADD response can invoke function ADDEMP. This capability allows you to
define a consistent user interface for an application, where all similar functions are
invoked in similar ways.

Once you have named all responses and functions, you are ready to further define each
one. Pressing [PF5] will advance you through the responses and functions selected on
the Response/Function List screen.

Below is a discussion of defining responses and functions.

Chapter 7. Defining an Application Structure Using ADSA 7-17

7.3 Instructions

7.3.5 Step 5: Further define the application responses

You further define each application response by using the Response Definition screen.
A sample Response Definition screen is shown below:

 Sample screen

R S
 Response Definition

 Application name: XXXAPPL Version: 1

 Response name: ADD Drop response (/) _

 Function invoked: ADDDEP

 Description ____________________________ Security class: ?

 Response type. 2 1. Global 2. Local

 Response execution 2 1. Immediate 2. Deferred

 Assigned key PF?4

 Control command. 1 1. Transfer 2. Invoke

 3. Link 4. Return

5. Return continue 6. Return clear

7. Return continue clear 8. Transfer nofinish

9. Invoke nosave 1?. Link nosave

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

Screen prompts: Certain information will be presented to you when this screen is
displayed:

■ Application name — The name of the application will be displayed.

■ Version — The version number of the application will be displayed.

■ Response name — The name of the response as listed on the Response/Function
List screen will be displayed. At runtime, the user can enter the response name
on the screen to select the response.

■ Function invoked — The name of the function as listed on the Response/function
List screen will be displayed. This is the function that the response invokes at
runtime. For example, the ADD response invokes the ADDDEP function at
runtime.

■ Assigned key — The key assigned to this response on the Response/Function List
screen will be displayed. At runtime, the user can press the specified control key
to select the response.

When you define a response on the Response Definition screen, you typically enter
information after the following prompts:

7-18 CA-ADS User Guide

7.3 Instructions

■ Description — You can type a one-line description for each response. At
runtime, the description is displayed on each menu from which the response is
available.

■ Security class — You can assign a security class to this response. Applicable to
online applications only, security class specifies the DC/UCF security class in the
range 1 to 256, assigned to the application. Zero (0) is defined as always unse-
cured. See your security administrator about the security class conventions being
used at your site.

>> For more information on security classes, refer to the CA-ADS Reference.

■ Response type — (Applies at definition time only) The default response type, 2
(local), specifies that you must explicitly make the response valid for any func-
tions that use the response. You assign this response type to responses that are
not used by many functions in the application. For example, it is easier to define
ADD as a local response because you add it to only one function definition
(DEPTMENU).

A response that is available from many application functions is typically defined
as a 1 (global) response. A global response is added to each function definition
as the function is defined. You later deselect the global response from the few
functions that do not use the response. For example, you define BACK as a
global response because it is used by all but one function in the application.
When defining functions, it is easier to deselect BACK from one function than to
explicitly select it for all other functions.

Note: It is often useful to list the global responses before local responses on the
Response/Function List screen so that they are available for all function
definitions.

■ Response execution — You can specify whether the invoked function is imme-
diately executable or deferred.

>> For more information on immediate and deferred execution, see CA-ADS
Reference.

■ Control command — You must specify the control command (for example,
Transfer or Link) the response uses to invoke the specified function at runtime.
For prototype applications, which don't perform any significant processing, you
typically use the default control command, 1 (Transfer). When this command is
used to pass control to another function, the runtime system frees resources being
held for the original function.

>> For more information on control commands, see CA-ADS Reference.

Responses for Department application: The table below summarizes the spec-
ifications you will make for each of the five responses in the Department application.
You can define these responses in any order, although it is often useful to define the
global responses first. In the sample definition session shown in this chapter, these
responses are defined in the order presented below.

Chapter 7. Defining an Application Structure Using ADSA 7-19

7.3 Instructions

To begin defining application responses, access the Response Definition screen by
pressing [PF5] from the Response/Function List screen and define an application
response.

The first two responses, BACK and EXIT, are used by most functions in the applica-
tion. To make the functions easier to define later, you will define BACK and EXIT as
global responses. When you define functions in ADSA, a global response is automat-
ically available from each function. You can selectively remove a global function
from functions when you define the functions.

You define the BACK response as shown:

Defining the BACK response

R S
 Response Definition

 Application name: XXXAPPL Version: 1

 Response name: BACK Drop response (/) _

 Function invoked: POP

 Description return to menu

 Response type. 1 1. Global 2. Local

 Response execution 2 1. Immediate 2. Deferred

 Assigned key CLEAR

 Control command. 1 1. Transfer 2. Invoke

 3. Link 4. Return

5. Return continue 6. Return clear

7. Return continue clear 8. Transfer nofinish

9. Invoke nosave 1?. Link nosave

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

After you press [Enter], ADSA adds the response definition if there are no errors, and
then redisplays the Response Definition screen.

Response
name

Description Control
key

Function
invoked

Response
type

BACK Return to menu CLEAR POP Global

EXIT Terminate application PF9 QUIT Global

ADD Add a new depart-
ment

PF4 ADDDEP Local

MOD Modify a department PF5 MODDEP Local

DEL Delete a department PF6 DELDEP Local

7-20 CA-ADS User Guide

7.3 Instructions

Defaults: ADSA fills in default values for the following Response Definition screen
prompts if you have not entered another value:

■ Response type returns the default value of 2 (Local). BACK is defined as a
global response because it is available from many functions in the Department
application. To specify that this response is global, overtype 2 with 1.

■ Response execution returns the default value of 2 (Deferred)

■ Control command returns the default value of 1 (Transfer).

When you press [Enter], the screen will redisplay with a confirming message if the
definition is correct, or an error message if an error has been encountered.

Note: If you press [Enter] after providing information, the screen will redisplay. If
you press [PF5] after providing information and there are no errors, the
appropriate Function Definition screen will be displayed. Since BACK and
EXIT are responses that invoke system functions, the Function Definition
screen will not be displayed.

Press [PF5] and define the EXIT response in the same way:

Defining the EXIT response

R S
 Response Definition

 Application name: XXXAPPL Version: 1

 Response name: EXIT Drop response (/) _

 Function invoked: QUIT

 Description terminate application Security class: ?

 Response type. 1 1. Global 2. Local

 Response execution 2 1. Immediate 2. Deferred

 Assigned key PF?9

 Control command. 1 1. Transfer 2. Invoke

 3. Link 4. Return

5. Return continue 6. Return clear

7. Return continue clear 8. Transfer nofinish

9. Invoke nosave 1?. Link nosave

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

These responses invoke system functions. You do not have to further define any
system function.

Defining the ADD response: The ADD response invokes the function, ADDDEP.
The response definition is as follows:

Chapter 7. Defining an Application Structure Using ADSA 7-21

7.3 Instructions

R S
 Response Definition

 Application name: XXXAPPL Version: 1

 Response name: ADD Drop response (/) _

 Function invoked: ADDDEP

 Description add department Security class: ?

 Response type. 2 1. Global 2. Local

 Response execution 2 1. Immediate 2. Deferred

 Assigned key PF?4

 Control command. 1 1. Transfer 2. Invoke

 3. Link 4. Return

5. Return continue 6. Return clear

7. Return continue clear 8. Transfer nofinish

9. Invoke nosave 1?. Link nosave

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

ADD is defined as a local response because it is available only from the DEPTMENU
function in the Department application. You will make ADD valid for DEPTMENU
when you define the DEPTMENU function in Step 6.

After you press [Enter], ADSA adds the response definition if there are no errors, and
then redisplays the Response Definition screen.

When you are finished defining a response for the Department application, you define
the function it invokes as described below. Pressing [PF5] will display the Function
Definition screen.

7.3.6 Step 6: Further define the application functions

Each function in an application represents a unit of work. For example, the
DEPTMENU function lists available responses and allows the user to select a
response. In this step, you will further define the following Department application
functions:

■ The DEPTMENU menu function, which displays a list of available responses
(ADD, MOD, DEL, and EXIT)

■ The ADDDEP dialog function, which allows the user to add a department record

■ The MODDEP dialog function, which allows the user to modify an existing
department record

■ The DELDEP dialog function, which allows the user to delete an existing depart-
ment record

Note: You do not have to define the POP or QUIT functions. POP and QUIT are
system functions that have reserved names and meanings. ADSA automatically will

7-22 CA-ADS User Guide

7.3 Instructions

add complete definitions for these functions when you associate them with the BACK
and EXIT responses.

Function Definition screens: You define menu and dialog functions in the
Department application by using one of several Function Definition screens:

■ Function Definition (Dialog) screen allows you to define dialog functions

■ Function Definition (Menu) screen allows you to define menu functions

■ Function Definition (Program) screen allows you to define program functions

>> For further information on program functions, see CA-ADS Reference.

Some of these screens are made up of multiple pages accessed through [PF7] and
[PF8]. The appropriate screen will be displayed based on the initial function definition
you gave on the Response/Function List screen.

Screen prompts: Certain information will be presented to you when this screen is
displayed:

■ Application name — The name of the application will be displayed.

■ Version — The version number of the application will be displayed.

■ Function name — The name of the function as listed on the Response/Function
List screen will be displayed. ADDDEP, for each function.

■ Associated dialog (dialog functions only) — The name of the dialog associated
with this function will be displayed. A dialog is an application component that
typically displays a screen to the user and processes information.

Note: The dialogs that you name in this chapter are not yet defined; you will define
dialogs for the Department application in Chapter 9, “Defining Dialogs Using
ADSC” on page 9-1.

Use the Function Definition screen to define basic information about a function, such
as:

■ A description — You can specify a one-line description to help you identify the
purpose of each function. This description is also available to the programmer (to
place as a header on a map, for example) through the global record.

■ The responses that the user can select from the function.

For example, as shown earlier in this chapter, ADD, MOD, DEL, and EXIT are
valid from the DEPTMENU function. EXIT is a global response, so it is automat-
ically available from DEPTMENU. You will use the Function Definition screen
to make ADD, MOD, and DEL also available from DEPTMENU.

■ Specify how menu screens are to appear at runtime (resequencing of menu items
and addition of header information). CA-ADS uses your specifications to format
and display menus at runtime.

Chapter 7. Defining an Application Structure Using ADSA 7-23

7.3 Instructions

>> For more information on these and other ADSA screens, see CA-ADS Reference.

The Department application: The following table summarizes the specifications
you will make for the functions in the Department application. You define one appli-
cation function at a time, transferring between ADSA screens as necessary.
Instructions for defining the DEPTMENU menu function and for defining the
ADDDEP, MODDEP, and DELDEP dialog functions are presented below.

Dialog and menu functions are discussed separately below. Remember, however, that
these screens will be displayed in the order in which you selected the functions on the
Response/Function List screen. Pressing [PF5] will move you from a response defi-
nition to a function definition and then on to the next response definition.

Function name Description Associated
dialog

Function
type

Valid
responses

ADDDEP Add department XXXDADD 1
(Dialog)

BACK

EXIT

MODDEP Mod department XXXDUPD 1
(Dialog)

BACK

EXIT

DELDEP Del department XXXDUPD 1
(Dialog)

BACK

EXIT

DEPTMENU Department
menu

Not appli-
cable

3 (Menu) ADD

MOD

DEL

EXIT

 7.3.6.1 Dialog functions

The functions, ADDDEP, MODDEP, and DELDEP, are all dialog functions. You
named these dialog functions on the Response/Function List screen earlier in this
chapter. At that time, ADSA automatically added skeleton definitions for the associ-
ated ADDDEP, MODDEP, and DELDEP functions. When you further define a dialog
function, you enhance these skeleton function definitions.

Pressing [PF5] from the Response Definition screen for the response ADD brings you
to the dialog function definition for dialog ADDDEP in the Department application.

 Sample screen

7-24 CA-ADS User Guide

7.3 Instructions

R S
Function Definition (Dialog)

 Application name: XXXAPPL Version: 1

 Function name: ADDDEP Drop function (/) _

 Description . . . UNDEFINED

 Associated dialog XXXDADD User exit dialog ________

 Default response ________

 Valid Valid

 response(/) Response Key Function response(/) Response Key Function

_ ADD PF?4 ADDDEP _ ________ _____ ________

_ MOD PF?5 MODDEP _ ________ _____ ________

_ DEL PF?6 DELDEP _ ________ _____ ________

/ BACK CLEAR POP _ ________ _____ ________

/ EXIT PF?3 QUIT _ ________ _____ ________

_ ________ _____ ________ _ ________ _____ ________

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

You use the Function Definition (Dialog) screen to specify basic information for the
dialog function, including a description, and valid responses for that function.

Function description: When you display the Function Definition screen, the
Description field will contain a value of UNDEFINED because you have not yet
provided a description. A description must be provided before the application can be
compiled.

Valid responses: Valid responses are the responses (for example, BACK or EXIT)
that a user can access directly from a function. You specify a valid response by
entering a nonblank character opposite the response. When the screen is refreshed, a
slash (/) is displayed.

A response that has been defined as global on the Response Definition screen will
already be selected as a valid response for this function. You can deselect a response
by spacing over the slash.

To make it easier for you to define dialog functions, dialogs that you name on the
Function Definition screen do not yet have to be defined in the data dictionary. You
will define dialogs for Department application dialog functions later in this manual, in
Chapter 9, “Defining Dialogs Using ADSC” on page 9-1.

Defining the ADDDEP function: You specify basic information for the ADDDEP
function as shown:

Chapter 7. Defining an Application Structure Using ADSA 7-25

7.3 Instructions

R S
Function Definition (Dialog)

Application name: XXXAPPL Version: 1

Function name: ADDDEP Drop function (/) _

Description . . . add department

Associated dialog XXXDADD User exit dialog ________

Default response ________

 Valid Valid

 response(/) Response Key Function response(/) Response Key Function

_ ADD PF?4 ADDDEP _ ________ _____ ________

_ MOD PF?5 MODDEP _ ________ _____ ________

_ DEL PF?6 DELDEP _ ________ _____ ________

/ BACK CLEAR POP _ ________ _____ ________

/ EXIT PF?3 QUIT _ ________ _____ ________

_ ________ _____ ________ _ ________ _____ ________

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

When you press [Enter], ADSA redisplays the Function Definition screen with an
appropriate message. A confirming message is returned if there are no errors. In this
case, you have successfully modified and enhanced the skeleton dialog function.

An error message is returned if ADSA detects any errors. In this case, use the
message to determine the problem. You can type over any errors, and then press
[Enter] again.

Press [PF5] to see the next Response Definition screen.

Note: If you press [PF5] rather than [Enter] after providing information and there
are no errors, the appropriate Response Definition screen (or Function Defi-
nition screen, if there are no more responses to be defined) is displayed imme-
diately.

Defining the MOD response: You can now define the MOD response.

7-26 CA-ADS User Guide

7.3 Instructions

R S
 Response Definition

 Application name: XXXAPPL Version: 1

 Response name: MOD Drop response (/) _

 Function invoked: MODDEP

 Description modify department Security class: ?

 Response type. 2 1. Global 2. Local

 Response execution 2 1. Immediate 2. Deferred

 Assigned key PF?5

 Control command. 1 1. Transfer 2. Invoke

 3. Link 4. Return

5. Return continue 6. Return clear

7. Return continue clear 8. Transfer nofinish

9. Invoke nosave 1?. Link nosave

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

Defining the MODDEP function: Press [PF5] to see the Function Definition
screen for the function that response MOD invokes, MODDEP.

You now can define the MODDEP dialog function by using the Function Definition
screen:

R S
Function Definition (Dialog)

 Application name: XXXAPPL Version: 1

 Function name: MODDEP Drop function (/) _

 Description . . . modify department

 Associated dialog XXXDUPD User exit dialog ________

 Default response ________

 Valid Valid

 response(/) Response Key Function response(/) Response Key Function

_ ADD PF?4 ADDDEP _ ________ _____ ________

_ MOD PF?5 MODDEP _ ________ _____ ________

_ DEL PF?6 DELDEP _ ________ _____ ________

/ BACK CLEAR POP _ ________ _____ ________

/ EXIT PF?9 QUIT _ ________ _____ ________

_ ________ _____ ________ _ ________ _____ ________

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

When you are finished defining MODDEP, press [PF5] to go directly to the next
selected response.

Chapter 7. Defining an Application Structure Using ADSA 7-27

7.3 Instructions

Use the Response Definition and Function Definition screens to define the DEL
response and the DELEMP function.

Defining the DEL response

R S
 Response Definition

 Application name: XXXAPPL Version: 1

 Response name: DEL Drop response (/) _

 Function invoked: DELDEP

 Description delete department

 Response type. 2 1. Global 2. Local

 Response execution 2 1. Immediate 2. Deferred

 Assigned key PF?6

 Control command. 1 1. Transfer 2. Invoke

 3. Link 4. Return

5. Return continue 6. Return clear

7. Return continue clear 8. Transfer nofinish

9. Invoke nosave 1?. Link nosave

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

Defining the DELDEP function

R S
Function Definition (Dialog)

 Application name: XXXAPPL Version: 1

 Function name: DELDEP Drop function (/) _

 Description . . . delete department

 Associated dialog XXXDUPD User exit dialog ________

 Default response ________

 Valid Valid

 response(/) Response Key Function response(/) Response Key Function

_ ADD PF?4 ADDDEP _ ________ _____ ________

_ MOD PF?5 MODDEP _ ________ _____ ________

_ DEL PF?6 DELDEP _ ________ _____ ________

/ BACK CLEAR POP _ ________ _____ ________

/ EXIT PF?9 QUIT _ ________ _____ ________

_ ________ _____ ________ _ ________ _____ ________

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

7-28 CA-ADS User Guide

7.3 Instructions

Once you have defined the responses and functions above, press PF5 to bring you to
another Function Definition screen. There is one function as yet undefined:
DEPTMENU. DEPTMENU is a menu function.

 7.3.6.2 Menu functions

The last function listed in the table above is DEPTMENU, a menu function. You
specified that it was a menu function on the Response/Function List screen in Step 3.
To further define DEPTMENU, you must access the Function Definition screen by
pressing [PF5] from the Response Definition screen.

 Sample screen

R S
Function Definition (Menu) Page 1 of 2

Application name: XXXAPPL Version: 1

Function name: DEPTMENU Drop function (/) _

Description . . . UNDEFINED

Associated dialog ________

Default response ________ User exit dialog ________

Use signon menu (/). _

Menu defined by: 2 1. User 2. System

Description length 1 1. Long (28) 2. Short (12)

Responses per page 15

Number of heading lines (?-3). ?

Heading line text

+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....

 Enter F1=Help F3=Exit F4=Prev F5=Next F8=Fwd

W X

You use the Function Definition (Menu) screen to specify basic information about a
menu function. Each Function Definition (Menu) screen is made up of two pages.
You can access the second page of the screen by pressing [PF8].

Menu screens: Menu screens are supplied by CA-ADS; you do not have to write
any statements to handle the display or operation of a menu. To tailor the appearance
of a menu display, you can define a header to be displayed at the top of the menu
screen. This header can include a title, instructions, or any other appropriate text.

You specify basic information for function DEPTMENU as shown:

Defining the DEPTMENU function

Chapter 7. Defining an Application Structure Using ADSA 7-29

7.3 Instructions

R S
Function Definition (Menu) Page 1 of 2

 Application name: XXXAPPL Version: 1

 Function name: DEPTMENU Drop function (/) _

 Description . . . department menu

 Associated dialog ________

 Default response ________ User exit dialog ________

 Use signon menu (/). _

 Menu defined by: 2 1. User 2. System

 Description length 1 1. Long (28) 2. Short (12)

 Responses per page 15

 Number of heading lines (?-3). 2
 Heading line text

_________________________department information application____________________
 ____________________________________main menu__________________________________

+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....

 Enter F1=Help F3=Exit F4=Prev F5=Next F8=Fwd

W X

After you press [Enter], ADSA redisplays the Function Definition screen with a con-
firming message. An error message is returned if ADSA detects any errors. In this
case, use the message to determine the problem. You can type over any errors, and
then press [Enter] again.

Second page of Function Definition (Menu): You use the second page of the
Function Definition (Menu) screen to specify the responses (such as ADD) that a user
can access directly from the function. You also specify the sequence that the response
will be displayed on the menu. You access the second page by pressing [PF8].
Second and subsequent pages are response sequence screens.

Access the second page and make the ADD, MOD, DEL, and EXIT responses valid
from the DEPTMENU function as shown:

7-30 CA-ADS User Guide

7.3 Instructions

R S
Function Definition (Menu) Page 2 of 2

 Application name: XXXAPPL Version: 1

 Function name: DEPTMENU

Valid Seq. Response Key Function Valid Seq. Response Key Function

 resp. # Resp. #

_ ______ BACK CLEAR POP _ ______ ________ _____ ________

/ 4!!___ EXIT PF?9 QUIT _ ______ ________ _____ ________

/ 1!!___ ADD PF?4 ADDDEP _ ______ ________ _____ ________

/ 2!!___ MOD PF?5 MODDEP _ ______ ________ _____ ________

/ 3!!___ DEL PF?6 DELDEP _ ______ ________ _____ ________

_ ______ ________ _____ ________ _ ______ ________ _____ ________

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd F9=Update Seq

W X

Specifying menu sequence: You can use this screen to specify the sequence in
which valid responses are displayed on the menu screen.

You do this by entering sequence numbers for each valid response.

If you want to change the sequence numbers, you can change those numbers:

1?? ADD

2?? DEL

3?? EXIT To display MOD between ADD

15? MOD �--- and DEL, you would change

4?? to some value between

1?? (ADD) and 2?? (DEL).

For example: 1?1 or 15?.

Response sequence numbers displayed on the Function Definition screen are not dis-
played to users.

Inhibiting response display: You can also use this screen to inhibit the display of
valid responses on the menu screen.

You do this by replacing the sequence number for the response with 0 (zero):

1?? EMPINFO

2?? DEPTINFO To inhibit display of the

??? SALARIES �--- SALARIES response, you

4?? EXIT would replace 3?? with

 ? (zero).

Invisible responses can still be accessed by any user who knows the response name or
control key. To actively restrict responses, see information on security in the CA-ADS
Reference.

Chapter 7. Defining an Application Structure Using ADSA 7-31

7.3 Instructions

>> For more information on other uses of the Function Definition (Menu) screen, see
CA-ADS Reference.

The DEPTMENU function is now fully defined.

After you finish defining functions and responses for the Department application, press
[PF5] to return to the Response/Function List screen. Processed selections on the
Response/Function List screen will be de-selected; unprocessed selections will still be
selected and are accessed when you press [PF5].

It is helpful to re-access the Response/Function List screen to remind yourself where
you are in the definition process.

Press [PF5] again to go to the Global Records screen.

Press [PF5] again to go on to the Task Codes screen where you define a task code for
the application. (Alternatively, you can press [PF3] from the Response/Function List
screen to return to the Main Menu and choose option 4.)

7.3.7 Step 7: Define a task code

A task code defines an entry point into an application. At run time, developers and
users can execute an application by using the application's task code. An application
can have more than one task code; each one can be associated with a different function
in the application.

As an application developer, you must define at least one task code for an application
before you can successfully create a load module for the application. When you
define a task code, you name:

■ A task code (for example, XXXDEPT) that a user can supply to invoke the appli-
cation

■ The function (for example, DEPTMENU) to be executed first when a user sup-
plies the associated task code

You use the Task Codes screen to define task codes for an application. You can
access the Task Codes screen from the Response/Function List screen by pressing
[PF5].

Define a task code as shown:

Defining the task code

7-32 CA-ADS User Guide

7.3 Instructions

R S
 Task Codes Page 1 of 1

 Application name: XXXAPPL Version: 1

 Task Code Function Drop (/)

 1. xxxdept deptmenu _

 2. ________ ________ _

 3. ________ ________ _

 4. ________ ________ _

 5. ________ ________ _

 6. ________ ________ _

 7. ________ ________ _

 8. ________ ________ _

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

After you press [Enter], ADSA redisplays the Task Codes screen with a confirming
message. An error message is returned if ADSA detects any errors. In this case, use
the message to determine the problem. You can type over errors, and then press
[Enter] again.

When you have defined a task code for the Department application, you can create a
load module for the application as described below.

7.3.8 Step 8: Compile the application

When you compile an application, ADSA creates a load module that incorporates all
of your specifications. You compile an application by selecting the Compile activity
from the the action bar on the Main Menu screen.

You compile an application from the Main Menu screen. To get to the Main Menu
screen from the Task Codes screen, press [PF5].

Compiling the application: To compile the application, position the cursor on the
Compile item on the action bar and press ENTER. You can position the cursor on
Compile by:

■ Tabbing to Compile and pressing [Enter]

■ Pressing [PF10] to move to the action bar and then tabbing to Compile and
pressing [Enter]

■ Typing compile on the command line and pressing [Enter]

Chapter 7. Defining an Application Structure Using ADSA 7-33

7.3 Instructions

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile ation Compiler

2. View messages

----------------------- s International, Inc.

 F3=Exit

Application name XXXAPPL

Application version . . . 1

Dictionary name DEMO

Dictionary node ________

Screen 4 1. General options

2. Responses and Functions

3. Global records

4. Task codes

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Once you have displayed the Compile action item, choose 1 and press [Enter] to
compile the application.

After you press [Enter] to compile the application, ADSA displays messages to indi-
cate whether the application has been compiled successfully

If you receive an error message you can display diagnostic information by selecting
the View messages option from the Compile activity on the action bar. Based on
this information, you can correct the application and then compile it again.

7.3.9 Exit from ADSA

You can return directly to DC/UCF from the Main Menu by pressing PF3. Alterna-
tively, you can use the Switch activity on the action bar of the Main Menu screen to
transfer to another development tool.

In this sample session, you'll exit to DC/UCF so you can execute your application
structure. Press [PF3] to exit.

Note: If you leave ADSA without successfully compiling the current application defi-
nition, ADSA saves the suspended definition in a queue record associated with your
user ID. In an actual production environment, other users will not be able to access
the application definition. To enable them to access the definition, specify the Release
option from the Modify activity on the action bar on the Main Menu.

After you exit from ADSA, you can execute your application as described below.

7-34 CA-ADS User Guide

7.3 Instructions

7.3.10 Optionally execute the application

In the previous steps, you defined an executable application structure by using ADSA
screens. At this stage, your menu and system functions are fully defined. Your appli-
cation prototype is not fully operational, however, until you associate the dialog func-
tions in your application with executable dialogs.

In a typical development environment, application developers don't execute an applica-
tion until the prototype is complete. If you would like to execute your application to
see what you've already created, you can invoke and test the application as described
below.

7.3.10.1 Invoke the application

CA-ADS applications execute under the CA-ADS runtime system. To invoke the
Department application from DC/UCF, you can enter the task code for the runtime
system, followed by the application task code.

For example, assume that ADS is the task code for the runtime system and XXXDEPT
is the task code for the Department application. You can invoke the Department appli-
cation as shown:

ads xxxdept

 ↑ ↑

 │ │

 │ Sample task code for

 │ the Department application

 │

Sample task code

for the runtime system

 [Enter]

The DEPTMENU screen is the first screen displayed.

R S

DIALOG: PAGE: 1 OF: 1

 DATE: ?8/19/99 NEXT PAGE:

DEPARTMENT INFORMATION APPLICATION

 MAIN MENU

- _ ADD (PF4) ADD A NEW DEPARTMENT

_ MOD (PF5) MODIFY A DEPARTMENT

_ DEL (PF6) DELETE A DEPARTMENT

 - _ EXIT (PF9) TERMINATE APPLICATION

W X

Chapter 7. Defining an Application Structure Using ADSA 7-35

7.3 Instructions

Alternatively, you can enable developers and users to simultaneously invoke the
runtime system with an application. To do this, you associate the application task
code with the runtime system in either of the following ways:

■ At system runtime you issue a DCMT VARY DYNAMIC TASK command
while using DC/UCF to dynamically associate a task code with the runtime
system. Use of the DCMT VARY DYNAMIC TASK command is shown in 9.4,
“Instructions for executing the application” on page 9-17, later in this manual.

■ At system-generation time you use the TASK statement in the system definition
to associate the application task code with the CA-ADS runtime system.

This procedure typically is used for a production application. For more informa-
tion, see CA-IDMS System Generation.

After you invoke the Department application from DC/UCF, you can test out features
that you've already implemented, as described below.

7.3.10.2 Test current features

Using ADSA, you made the ADD, MOD, DEL, and EXIT responses valid from the
DEPTMENU function in Step 6. Of these responses, EXIT is the only response that is
associated with a fully defined function.

To see how the EXIT response works, select EXIT from the menu screen in any of the
following ways:

R S

 DIALOG: PAGE: 1 OF: 1

 DATE: ?8/19/99 NEXT PAGE:

DEPARTMENT INFORMATION APPLICATION

 MAIN MENU

_ ADD (PF4) ADD A NEW DEPARTMENT

_ MOD (PF5) MODIFY A DEPARTMENT

_ DEL (PF6) DELETE A DEPARTMENT

 x EXIT (PF9) TERMINATE APPLICATION

 RESPONSE:

W X

To test out other features of the Department application, you can invoke the applica-
tion again, as described earlier in 7.3.10.1, “Invoke the application” on page 7-35.

You can try pressing a control key (such as &pf4). that is not associated with a
response on this menu. The runtime system automatically detects undefined control
keys and returns the following message:

CCC UNACCEPTABLE RESPONSE. PLEASE TRY AGAIN CCC

7-36 CA-ADS User Guide

7.3 Instructions

Requesting a function that requires further definition: You can try the ADD,
MOD, and DEL responses if you want. Since the associated ADDDEP, MODDEP,
and DELDEP functions still require further definition, selecting ADD, MOD or DEL
will cause the application to terminate. In this case, the runtime system displays the
Dialog Abort Information screen:

Dialog Abort Information screen

R S
CA-ADS RELEASE 15.? CCC DIALOG ABORT INFORMATION CCC ABRT

DC171?28 APPLICATION NOT EXECUTED. DIALOG LOAD MODULE XXXDADD MISSING

 DATE....: 91.?78 TIME....: 1?:3?:51.3? TERMINAL....: LV35??3

 ERROR OCCURRED IN DIALOG......: XXXDADD

 AT OFFSET......:

 IN PROCESS.....: VERSION: ?

AT IDD SEQ NO. : ????????

SEQUENCE

NUMBER: SOURCE :

????????

????????

????????

 HIT ENTER TO RETURN TO DC OR ENTER NEXT TASK CODE:

W X

The Dialog Abort Information screen is particularly useful when you are developing
and debugging process logic for dialogs. At that time, this screen can help you deter-
mine where in a module of process code the dialog fails.

The display of this diagnostic screen can be disabled when the application is ready for
final release.

Chapter 7. Defining an Application Structure Using ADSA 7-37

7.4 Summary

 7.4 Summary

Creating the executable structure: In this chapter, you used ADSA screens to
create the executable structure for the sample Department application. The structure
includes:

■ Responses, which define the possible runtime paths available to users of the appli-
cation

■ Functions, which define the activities that users can perform while using the
application

■ A task code that defines an entry point into the application and allows users to
invoke the application

You built the application structure by establishing relationships between responses and
functions as you defined them:

■ For each response, you named the function to be invoked by the response.

■ For each function, you named the responses to be valid from the function. At
runtime, the user can select any of the valid responses from the function.

For menu function DEPTMENU, you also specified how options for the user and the
menu's title are to appear on the menu screen at runtime. For each of the application's
dialog functions, you also named the executable component (that is, the dialog) to be
executed at runtime when the user invokes the associated function. You will actually
define these dialogs in Chapter 9, “Defining Dialogs Using ADSC” on page 9-1.

Creating the load module: When you finished defining the structure of the
Department application, you created a load module for the application. You created
this executable load module without explicitly writing any lines of procedural code.
By using ADSA screens, you have implicitly coded all potential flow of control for the
application.

Even at this early stage in the application development cycle, your application contains
fully executable components, such as function DEPTMENU. Your dialog functions
(ADDDEP, MODDEP, and DELDEP) are not yet developed fully, so you cannot
execute them. As soon as you develop the ADDDEP, MODDEP, and DELDEP dialog
functions, your application will be fully executable.

The first step in developing dialogs is to create screens that the dialogs will display to
users. You will create the screen display for the ADDDEP, MODDEP, and DELDEP
dialog functions in the next chapter.

7-38 CA-ADS User Guide

Chapter 8. Defining a Screen Display Using MAPC

8.1 Introduction . 8-3
8.2 Overview . 8-4
8.3 Instructions . 8-6

8.3.1 Step 1: Invoke MAPC . 8-6
8.3.2 Step 2: Name the map . 8-7
8.3.3 Step 3: Name the records . 8-9
8.3.4 Step 4: Create the map with the autopaint facility 8-11
8.3.5 Step 5: Modify the map layout . 8-14
8.3.6 Step 6: Select fields for further definition 8-21
8.3.7 Step 7: Edit variable fields . 8-22
8.3.8 Step 8: Edit literal fields . 8-26
8.3.9 Step 9: Compile the map . 8-31
8.3.10 Exit from MAPC . 8-32
8.3.11 Optionally display the map . 8-32

8.4 Summary . 8-34

Chapter 8. Defining a Screen Display Using MAPC 8-1

8-2 CA-ADS User Guide

8.1 Introduction

 8.1 Introduction

In the previous chapter, you used ADSA to define the structure of the sample Depart-
ment application. As another step in creating an application, you define screen dis-
plays by using the map compiler (MAPC). This chapter provides instructions for
defining the XXXMAP screen display for use in the sample Department application.

Note: When creating your map, you can substitute your initials for the XXX in the
map name.

This chapter includes:

■ An overview of how maps are used in the CA-ADS environment

■ Instructions for defining maps for the sample Department application

■ A summary of what you've accomplished in this chapter

Chapter 8. Defining a Screen Display Using MAPC 8-3

8.2 Overview

 8.2 Overview

What is a map: A .* * map is a predefined screen display used by dialogs in an
application. At runtime, dialogs use maps to interact with users. For example, the
sample map XXXMAP that you create in this chapter is used to display existing depart-
ment records to users for modification or deletion. XXXMAP also allows users to add
new department records. The XXXMAP layout is shown in the diagram below. This
sample map allows users to input and display a department's ID number and name, and
the ID number of the department head.

 XXXMAP layout

R S

 FUNCTION: ________

 DEPARTMENT INFORMATION

DEPARTMENT ID: ____

NAME: __

HEAD ID ..: ____

 NEXT RESPONSE: ________

 __

W X

Defining a map: You define the layout of a map by defining individual fields on
the map. You can define two types of fields:

■ Literal fields display unchanging literal strings.

Titles, instructions, and prompts often are defined as literal fields. For example,
the DEPARTMENT INFORMATION title shown in the map layout is a literal
field.

■ Variable fields display stored values and allow users to store new values at
runtime.

For example, the field to the right of the DEPARTMENT ID field on the map
layout is a variable field. At runtime, this field displays the ID number for a
department record. Additionally, the user can type a new id number into this
variable field to modify or add a department record. The last field on the screen,
the message field, is also a variable field. At runtime, this field displays a
message (message field is blank in this sample screen).

You will use the online mapping facility (MAPC) to define map XXXMAP shown in
the map layout.

8-4 CA-ADS User Guide

8.2 Overview

A typical MAPC screen is shown below:

R S
─ Add Modify Compile Delete Display Switch

 .__.

 ─

CA-IDMS/DC Online Map Compiler

Computer Associates International, Inc.

 ─

 Map name ________

 Map version ____

 Dictionary name ________

 Dictionary node ________

 ─

 ─ Screen _ 1. General options

 2. Map-Level help text definition

 3. Associated records

 4. Layout

 5. Field definition

 ─

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Chapter 8. Defining a Screen Display Using MAPC 8-5

8.3 Instructions

 8.3 Instructions

You use MAPC to define maps. To define XXXMAP in this chapter, you will:

 1. Invoke MAPC

2. Name the map

3. Name the records

4. Create the map with the autopaint facility

5. Modify the layout of the map, if necessary

6. Select fields for further definition

7. Edit the selected fields

8. Compile the map (creating a map load module)

After you compile the map, you can exit from MAPC and optionally display the map
you have just defined.

Steps for defining map XXXMAP are presented below.

 8.3.1 Step 1: Invoke MAPC

You can invoke MAPC from CA-IDMS-DC or CA-IDMS/UCF (DC/UCF) by speci-
fying the task code for MAPC (for example, MAPCT) in response to the prompt pre-
sented by DC/UCF. For example, you can invoke MAPC from CA-IDMS/DC as
shown:

ENTER NEXT TASK CODE:

mapct

Press the ENTER

key to input the -─� [Enter]

task code for

 MAPC.

For more information on task codes for CA-ADS development tools, see 6.3, “Appli-
cation development tools” on page 6-7.

MAPC begins by displaying the Main Menu screen, on which you specify basic infor-
mation about a map. Use the Main Menu screen to begin defining map XXXMAP, as
described in Step 2.

8-6 CA-ADS User Guide

8.3 Instructions

8.3.2 Step 2: Name the map

The first screen in an MAPC session is the Main Menu screen. A sample Main
Menu is shown below:

Sample Main Menu screen

R S
Add Modify Compile Delete Display Switch

 ___.

CA-IDMS/DC Online Map Compiler

Computer Associates International, Inc.

Map name ________

Map version ____

Dictionary name ________

Dictionary node ________

Screen _ 1. General options

2. Map-Level help text definition

3. Associated records

 4. Layout

5. Field definition

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Screen prompts: When you begin a map definition, you typically enter information
after one or more of the following Main Menu screen prompts:

■ Map name — You must supply a map name. The name you specify must be
unique among all programs. (For example, it cannot be the same name as a
dialog.)

■ Map version — You type the version number of the map after the Map version
prompt. If not specified, the map version defaults to the version number specified
as a dictionary option.

■ Dictionary name — You must specify the same dictionary (if any) as you speci-
fied for your application definition in 7.3.2, “Step 2: Name the application” on
page 7-11. The correct dictionary name may already be displayed in this field.

■ Dictionary node — You must specify the same dictionary node (if any) as you
specified for your application definition in Chapter 7. The correct dictionary node
may already be displayed in this field.

You specify basic information about map XXXMAP on the Main Menu screen.

Defining the XXXMAP map: You can use the tab key to move the cursor quickly
and easily between prompts. Begin defining your application on the Application Defi-
nition screen as shown below:

Chapter 8. Defining a Screen Display Using MAPC 8-7

8.3 Instructions

R S
Add Modify Compile Delete Display Switch

 ___.

CA-IDMS/DC Online Map Compiler

Computer Associates International, Inc.

Map name xxxmap
Map version 1
Dictionary name demo
Dictionary node ________

Screen _ 1. General options

2. Map-Level help text definition

3. Associated records

 4. Layout

5. Field definition

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Adding the map: To add the map, position the cursor on the Add item on the
action bar and press [Enter]. You can position the cursor on Add by:

■ Tabbing to Add and pressing [Enter]

■ Pressing [PF10] to move to the action bar and then tabbing to Add and pressing
[Enter]

■ Typing add on the command line and pressing [Enter]

R S
Add Modify Compile Delete Display Switch

 .___.

 Copy from Map

 Name ________ CA-IDMS/DC Online Map Compiler

 Version _____

 __________________ Computer Associates International, Inc.

 1. All

 2. Format

 F3=Exit

 ___________________ XXXMAP__

Map version 1

Dictionary name DEMO____

Dictionary node ________

Screen _ 1. General options

2. Map-Level help text definition

3. Associated records

 4. Layout

5. Field definition

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

8-8 CA-ADS User Guide

8.3 Instructions

Once you have displayed the Add action item, press [Enter] to add the map to the
dictionary. After you press [Enter], the action is confirmed.

MAPC redisplays the Main Menu screen with a message:

■ Map XXXMAP version 1 has been added is returned when your definition
contains no errors.

■ An error message is returned if MAPC detects any errors. Read the message to
see what problem has occurred. You can type over any errors and then press
[Enter] again.

After you provide basic information about the map, you can specify the records you
want to use on the map.

8.3.3 Step 3: Name the records

The Associated Records screen is used to enter the schema or work records to be
used by the map, and optionally specifies role names for records.

The autopaint feature is invoked from this screen. The autopaint feature automatically
paints the map based on the elements you select.

You access the Associated Records screen from the Main Menu by entering the
number 3 next to the Screen prompt and pressing [Enter].

R S
Add Modify Compile Delete Display Switch

 ___.

CA-IDMS/DC Online Map Compiler

Computer Associates International, Inc.

Map name XXXMAP__

Map version 1

Dictionary name DEMO____

Dictionary node ________

Screen 3 1. General options

2. Map-Level help text definition

3. Associated records

 4. Layout

5. Field definition

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Sample Associated Records screen

Chapter 8. Defining a Screen Display Using MAPC 8-9

8.3 Instructions

R S
 Associated Records Page 1 of 1

 Map name: XXXMAP Version: 1

 Record name Version Role name Drop

 (/)

 1 ________________________________ ________________________________ _

 2 ________________________________ ________________________________ _

 3 ________________________________ ________________________________ _

 4 ________________________________ ________________________________ _

 5 ________________________________ ________________________________ _

 6 ________________________________ ________________________________ _

 7 ________________________________ ________________________________ _

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd F9=Autopaint

W X

Screen prompts: On the Associated Records screen, you name the records that will
be used on the map:

■ Record name — You associate existing database and work records with the map
by naming the records in the lines below the Record name prompt.

Associating a record with a map allows the map to display and store data for that
record. Records associated with maps sometimes are referred to as map records
to indicate that the records define data used by the map.

Records contain record elements, which define data. In relational terminology, a
record is a data table that contains columns defining data to be stored. An
example of a record is the DEPARTMENT database record. One of the elements
in the DEPARTMENT record is DEPT-NAME-0410. This element stores depart-
ment names. The layout of the sample DEPARTMENT record is provided in
Appendix C, “Layout of the DEPARTMENT Record” on page C-1.

■ Version — You type the version number of the record below the Version prompt.

For example, the demonstration database at your site might have a few different
versions of the DEPARTMENT record, each reserved for specific testing or devel-
opment purposes. In this case, each different version of the record has a unique
version number (for example: 1, 2, or 100). To ensure that MAPC uses the
correct version of the record, you specify the record version number along with
the record name.

Records associated with XXXMAP: The following table lists the records you
will associate with map XXXMAP.

8-10 CA-ADS User Guide

8.3 Instructions

Record Purpose

DEPARTMENT

Version: 1 C

A database record in the demonstration database. DEPARTMENT
includes elements for department ID number, department name, and
the employee ID of the department head.

ADSO-APPLICATION-GLOBAL-

RECORD

Version: 1

A special CA-ADS record that contains information about the applica-
tion at runtime. For example, this record includes a record element
that at runtime contains the name of the currently executing function.

C A different version of the DEPARTMENT record may be provided

for use at your site.

Associating records with XXXMAP

R S
 Associated Records Page 1 of 1

 Map name: XXXMAP Version: 1

 Record name Version Role name Drop

 (/)

1 department______________________ 1 ________________________________ _

 2 adso-application-global-record__ 1 ________________________________ _

 3 ________________________________ ________________________________ _

 4 ________________________________ ________________________________ _

 5 ________________________________ ________________________________ _

 6 ________________________________ ________________________________ _

 7 ________________________________ ________________________________ _

 DC3666?1 Map options processed successfully

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd F9=Autopaint

W X

After you have entered the names of the records on the Associated Records screen,
press [PF9] to use the autopaint facility to create the map.

8.3.4 Step 4: Create the map with the autopaint facility

You can create a map either manually or through the autopaint facility.

To create a map manually, you would name the records on the Associated Records
screen and then place each literal and variable field explicitly on the map using the
Layout screen. Then you would further define each variable field to associate a record
element with that field.

�� For further information, see CA-IDMS Mapping Facility.

Chapter 8. Defining a Screen Display Using MAPC 8-11

8.3 Instructions

The autopaint facility quickly creates a standard map layout based on the records you
have named on the Associated Records screen. The autopaint facility is useful for
maps which require little or no explicit screen placement.

You will use the autopaint facility to create the XXXMAP for the Department applica-
tion.

The first step in using the autopaint facility to create a map is to go to the Automatic
Screen Painter screen to identify the fields you want to have displayed on the map.
Here you determine what record elements will be displayed on the screen.

A record element is a data definition that is contained in a record.

For example, the DEPARTMENT record contains a record element for a department's
name, DEPT-NAME-0410.

If the dialog retrieves a department record from the database, the record is temporarily
stored in variable storage. The record name in variable storage is automatically dis-
played when the map is displayed. If the user enters a valid department name in this
map field, the data is automatically moved into variable storage. It can then be saved
in the database or used to access other data, depending on the dialog code.

To access the Automatic Screen Painter screen, press [PF9] from the Associated
Records screen.

Sample Automatic Screen Painter screen

R S
Automatic Screen Painter Page 1 of 3

 Map name: XXXMAP Version: 1

Select (/) Element Level and Name Occurs

 ?1 DEPARTMENT VERSION ???1

 _ ?2 DEPT-ID-?41?

 _ ?2 DEPT-NAME-?41?

 _ ?2 DEPT-HEAD-ID-?41?

 ?1 ADSO-APPLICATION-GLOBAL-RECORD VERSION ???1

 _ ?3 AGR-APPLICATION-NAME

 _ ?3 AGR-CURRENT-FUNCTION

 _ ?3 AGR-NEXT-FUNCTION

 _ ?3 AGR-CURRENT-RESPONSE

 _ ?3 AGR-DEFAULT-RESPONSE

 _ ?3 AGR-TASK-CODE

 _ ?3 AGR-EXIT-DIALOG

 _ ?3 AGR-PRINT-DESTINATION

 _ ?3 AGR-DATE

 _ ?3 AGR-USER-ID

 DC3655?3 Select the fields that are to appear on the screen

 F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

Screen prompts: On the Automatic Screen Painter screen, you can select the fields
that will be used on the map. The fields will be listed under the appropriate record
name. Use a nonblank character to select the fields you want displayed.

8-12 CA-ADS User Guide

8.3 Instructions

■ Element level and name — Each element within a record listed on the Associ-
ated Records screen will be displayed. Each element is associated with its level
number as defined in the dictionary.

■ Occur — If the element is a repeating element, you can define the occurrence
number in this column.

There can be multiple pages of elements. Press [PF8] to continue to the next page.

Fields on XXXMAP: The following table lists the records and fields to be displayed
on XXXMAP.

Note:

The database does not have to be defined before you create the prototype map
layout. If the database were not already defined, you would define all literal
fields manually. (See Appendix C, “Layout of the DEPARTMENT Record”
on page C-1)

Selecting fields for use with XXXMAP

R S
Automatic Screen Painter Page 1 of 3

 Map name: XXXMAP Version: 1

Select (/) Element Level and Name Occurs

 ?1 DEPARTMENT VERSION ???1

 / ?2 DEPT-ID-?41?

 / ?2 DEPT-NAME-?41?

 / ?2 DEPT-HEAD-ID-?41?

 ?1 ADSO-APPLICATION-GLOBAL-RECORD VERSION ???1

 _ ?3 AGR-APPLICATION-NAME

 / ?3 AGR-CURRENT-FUNCTION

 _ ?3 AGR-NEXT-FUNCTION

 _ ?3 AGR-CURRENT-RESPONSE

 _ ?3 AGR-DEFAULT-RESPONSE

 _ ?3 AGR-TASK-CODE

 _ ?3 AGR-EXIT-DIALOG

 _ ?3 AGR-PRINT-DESTINATION

 _ ?3 AGR-DATE

 _ ?3 AGR-USER-ID

 DC3655?3 Select the fields that are to appear on the screen

 F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

After you have selected the names of the fields on the Automatic Screen Painter
screen, press [PF5] to paint the map.

Record Fields

DEPARTMENT
DEPT-ID-?41?

DEPT-NAME-?41?

DEPT-HEAD-ID-?41?

ADSO-APPLICATION-GLOBAL-
RECORD

AGR-CURRENT-FUNCTION

Chapter 8. Defining a Screen Display Using MAPC 8-13

8.3 Instructions

Note: You can press [Enter] first if you want the screen to be redisplayed to check
your choices.

If there are multiple pages of elements, you would use [PF8] to move to subse-
quent screens for further selection.

The autopainted screen will be displayed on the Layout screen. Now you can modify
the placement of the fields and request that some fields be further defined.

8.3.5 Step 5: Modify the map layout

You use the Layout screen to modify the layout of fields on a map. There are two
types of fields on the screen:

■ Map literal fields display predefined literal strings at runtime.

■ Map variable fields display stored values and allow users to store new values at
runtime.

When you modify map XXXMAP in this chapter, you will:

■ Add new literal fields

■ Modify literal fields

■ Change the placement of variable and literal fields

Accessing the Layout screen: Once you have pressed [PF5] from the Automatic
Screen Painter screen, the Layout screen is displayed to you with the automatically-
created map presented. Fields at the bottom of the screen show key functions and a
scale.

To reveal the hidden portion of the screen, press [PF8].

Sample Layout screen with additional fields displayed

8-14 CA-ADS User Guide

8.3 Instructions

R S

 ;DEPT-ID-?41? ;____C

 ;DEPT-NAME-?41? ;___C

 ;DEPT-HEAD-ID-?41? ;___C

 ;AGR-CURRENT-FUNCTION ;___C

;NEXT RESPONSE;________C

__

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 Enter F1=Help F2=Select F3=Exit F4=Prev F5=Next F6=Preview F7=Top

 F9=SetCursor F1?=Deselect F11=AltKeys

W X

Note: Although you did not specify a response or message field, ADSA provided
both. Since you associated the global record with this map, ADSA provided
AGR-MAP-RESPONSE and AGR-MESSAGE as the response and message
variable fields. If you had not associated the ADSO-APPLICATION-
GLOBAL-RECORD with this map, ADSA would have provided $RESPONSE
and $MESSAGE as the response and message variable fields.

Notice that the field mark for the message field is in column 80 so that the
message will begin in column 1 of the following line.

Press [PF11] to reveal the alternate PF key set used for tailoring the screen.

Sample Layout screen with alternate set of PF keys displayed

Chapter 8. Defining a Screen Display Using MAPC 8-15

8.3 Instructions

R S

 ;DEPT-ID-?41? ;____C

 ;DEPT-NAME-?41? ;___C

 ;DEPT-HEAD-ID-?41? ;____C

 ;AGR-CURRENT-FUNCTION ;________C

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 F1=Help F2=Mark F3=Copy F4=Move F5=Delete F6=Preview F8=Bottom

 F9=SetCursor F1?=ClrMark F11=MainKeys

W X

When you first display the Layout screen for an existing map, each field on the map is
preceded by a start-field character, as shown above. While using the Layout screen,
you can select a field for editing by:

■ Pressing [PF2] while on the field you want to select (with the main set of function
keys displayed at the bottom of the screen)

or

■ Typing a select-field character (%) in place of the start-field character for the
field.

You use the start-field and select-field characters based on the following guidelines:

■ The start-field character (default is ; or &lbr.) defines the start of a field on the
Layout screen.

■ The select-field character (default is %) defines the start of a field and simultane-
ously selects the field for editing.

You use the Layout screen to modify the layout of map XXXMAP and to select fields
on the map for further editing:

Selecting multiple fields to edit: You can mark two fields with [PF2] to select
either all literal fields or all data fields in the area bounded by the two fields you
mark.

If the first field you marked with [PF2] was a literal field, all literal fields between the
two marked fields are selected. If the first field you marked with [PF2] was a data
field, all data fields between the two marked fields are selected.

8-16 CA-ADS User Guide

8.3 Instructions

Adding literal fields: You place each field on the Layout screen in the following
manner:

1. Position the cursor by using any of the cursor movement keys.

2. Type a start-field character for each literal and variable field.

Note: In this document, the start-field character is shown as a ";". Do not confuse
this with a semi-colon.

On the Layout screen, the start-field character signals the start of a field. For example:

Sample start-field

character.

│

↓

;sample literal field
 ↑

 │

 The field itself starts in the column that

 immediately follows the start-field character.

At runtime, the start-field character is not shown to users with 3270-type terminals.
Instead, each field is preceded by a nondisplayable attribute byte. The attribute byte
specifies the runtime characteristics of the field, such as input restrictions and display
intensity.

The default start-field character for the Layout screen is:

■ For IBM-type terminals, the field mark character (;)

Note: The field mark is not the same as the semicolon character. To type a field
mark, you press the FIELD MARK key.

 ■ For Siemens-type terminals, the left brace character (&lbr.)

Note: The start-field character for the Layout screen is defined at system-
generation time, and can vary from site to site.

■ Type the literal string (for literal fields only) after the start-field character.

Note: To add a variable field, you need only type the start-field character. (See
Chapter 11, “Modifying a Map Using MAPC” on page 11-1.)

Changing the content of a literal field: To change the content of an existing
literal field, type characters or spaces over the fields that you want to change.

Note: Use the ERASE EOF key only if you want to erase everything that can be seen
on the Layout screen starting at the current cursor position.

Moving fields, lines, and blocks: You can move fields or groups of fields:

■ Moving one field — Move the cursor to the field you want to move and press
[PF2] with the alternate set of function keys displayed at the bottom of the screen.
This marks the field.

■ Moving a line — Move the cursor to the starting position of the block you want
to move and press [PF2] twice. This marks the line.

Chapter 8. Defining a Screen Display Using MAPC 8-17

8.3 Instructions

■ Moving a block — Move the cursor to the starting position of the block you want
to move and press [PF2]. Move the cursor to the ending point of the block and
press [PF2] again. This marks a block.

Move the cursor to the desired target location for the field, line, or block, and press
[PF4].

Deleting fields, lines, and blocks: Mark the field, line, or block. Then press
[PF5].

Copying fields, lines, and blocks: Mark the field, line, or block. Then press
[PF3].

When you copy literal or variable fields, the complete definition of the literal or vari-
able field (including attributes, etc.) is copied. Copying a data field that occurs incre-
ments the subscript to the next available value.

Modifying the map layout for XXXMAP: For map XXXMAP, you selected four
variable fields that are now shown on the Layout screen. These are associated with
four literal fields. Each literal and variable field is shown with the field mark (;) used
as the start-field character.

R S

 ;DEPT-ID-?41? ;____C

 ;DEPT-NAME-?41? ;___C

 ;DEPT-HEAD-ID-?41? ;____C

 ;AGR-CURRENT-FUNCTION ;________C

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 F1=Help F2=Mark F3=Copy F4=Move F5=Delete F6=Preview F8=Bottom

 F9=SetCursor F1?=ClrMark F11=MainKeys

W X

You are going to modify this map so that it looks like the following layout:

8-18 CA-ADS User Guide

8.3 Instructions

R S

 FUNCTION: ________

 DEPARTMENT INFORMATION

 ─ DEPARTMENT ID......: ____C

 NAME.....: ___C

 ─ HEAD ID..: ____C

NEXT RESPONSE: _

W X

Your modifications involve:

■ Changing the AGR-CURRENT-FUNCTION literal field to FUNCTION

■ Moving the FUNCTION literal and variable fields

■ Adding a title

■ Modifying the remaining literal fields

Modifying the FUNCTION fields for XXXMAP: The
AGR-CURRENT-FUNCTION fields (literal and variable) should be placed in the
upper left corner of the screen and the literal changed to FUNCTION according to the
sample screen.

To change the FUNCTION field:

1. Overtype the literal field (leaving the field mark) with the word FUNCTION

2. Mark the variable field

3. Move the variable field closer to the FUNCTION literal field

4. Mark the line containing the literal and variable fields

5. Move the line to the upper left corner

Add the title

1. Place the cursor where you want the title to begin.

2. Type a field mark

3. Type the title, DEPARTMENT INFORMATION

Chapter 8. Defining a Screen Display Using MAPC 8-19

8.3 Instructions

Modify the remaining literal fields: There are three literal fields relating to the
DEPARTMENT record. Modify these fields so that they match the XXXMAP screen
shown above.

1. Overtype the literal fields with the appropriate words

2. Mark each field that needs to be moved

3. Move the field

Remember that there is more room for screen layout hidden at the bottom of the
screen. To see this hidden area, press [PF8].

The completed screen should look like the one below.

R S

 ;FUNCTION:;

 ;DEPARTMENT INFORMATION

 ;DEPARTMENT ID:;

 ;NAME:;

;HEAD ID ..:;

 ;NEXT RESPONSE: ;

 ;

W X

After you press [Enter], MAPC redisplays the Layout screen so that you can inspect
the screen for errors. At this point, it is a good idea to verify that:

■ You have preceded each literal field with a start-field character.

■ You have defined each variable field with a start-field character, including the
field that starts on the bottom right-hand margin of the screen and wraps around to
the last line on the screen.

Correcting errors: If you find any mistakes in the map layout, you can correct the
Layout screen in either of the following ways:

■ To change a few fields, type over the characters that you want to change and
press [Enter] again.

■ To erase all fields that you just placed on the screen, press the CLEAR key. If
you press CLEAR, you must then place fields on the Layout screen again, as
described earlier.

When you are satisfied with the Layout screen, press [PF11] to return to the main
keys. You can now go on to Step 6, where you will select fields for further definition.

8-20 CA-ADS User Guide

8.3 Instructions

8.3.6 Step 6: Select fields for further definition

In Step 5, you modified the position of fields on your map and redefined some of the
literal fields.

At this point, literal fields (for example, DEPARTMENT ID) are fully defined,
although you can modify their definitions at any time.

Variable fields may not be fully defined. In this step, you will select fields for further
definition. You will edit the field definitions in Steps 7 and 8.

Selecting fields: While on the Layout screen, you can select fields for further defi-
nition. To do this, you press [PF2] once while the cursor is on the field you want to
select. Pressing [PF2] marks a field for selection. (Alternatively, you can overtype
the start-field character with a percent sign - %.)

Select XXXMAP fields: The XXXMAP fields you need to further define are:

■ The FUNCTION variable field

■ The DEPARTMENT INFORMATION literal field

■ The DEPARTMENT ID variable field

■ The NAME variable field

■ The HEAD ID variable field

■ The message variable field

R S

 ;FUNCTION: %________

 %DEPARTMENT INFORMATION

;DEPARTMENT ID: %____C
;NAME: %__C
;HEAD ID ..: %____C

;NEXT RESPONSE: ;_

_

W X

Select the fields for further definition. Then press [PF5] to continue to the Literal
Definition and Field Definition screens shown below. MAPC will bring up the appro-
priate Literal Definition or Field Definition screen depending on the fields you selected
on the Layout screen. Pressing [PF5] will bring you to the next definition screen in
order of your selection.

Chapter 8. Defining a Screen Display Using MAPC 8-21

8.3 Instructions

This chapter separates the discussion of variable and literal fields, but remember that
MAPC will intermix the two.

8.3.7 Step 7: Edit variable fields

In this step, you will edit a variable field's definition to determine what characteristics
the field will have at runtime. You access the Field Definition screen from the Layout
screen by pressing [PF5] after you have selected fields from the screen, or by pressing
[PF5] from another definition screen (either Field or Literal Definition).

There are seven pages of data field screens. Navigate through these pages using [PF7]
or [PF8], or move directly to the desired page by overtyping the page number.

Sample Field Definition screen - page 1

R S
 Field Definition Page 1 of 7

 Map name: XXXMAP Version: 1

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 ;FUNCTION: ;________C

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 Field at row 1 column 1 Drop field (/) _

Element name: AGR-CURRENT-FUNCTION Subscript

 In record ADSO-APPLICATION-GLOBAL-RECORD Version 1

 Edit Picture X(8)

 Display intensity 2 1. Normal 2. Bright 3. Hidden

At end of field 1 1. Auto-tab 2. Lock keyboard 3. Take no action

Unprotected (/) / Required (/). _

Automatically edited (/) / Skipped by tab key (/) _

 DC366??4 Specify the variable field and any attributes

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

W X

Notice that the Field Definition screen shows the field to be defined plus two scales to
help you position the field.

You use the Field Definition screen to edit one map field at a time. After you edit a
field (using [PF8] if you need to go to further pages), press [PF5]. MAPC displays
either the Field Definition screen or the Literal Definition screen for the next field that
you've selected. When you've edited all selected fields, MAPC returns you to the
Main Menu screen.

Note: Pressing [Enter] on any screen causes it to redisplay so that you can make
changes if you want.

8-22 CA-ADS User Guide

8.3 Instructions

Prompts: In this step, you use the following prompts on page 1 of the Field Defi-
nition screen:

■ Element name — Name of a record element or special system field to be dis-
played and input in the variable map field.

When you autopainted the map, you selected the record elements you wanted dis-
played in the variable fields on that map (such as the department-name record
element for the variable map field that follows the literal FUNCTION field).
These element names are displayed on the Field Definition screen. At runtime,
that variable map field displays and allows users to input department names.

If you were to create a map manually, you would have to specify the element
names on this screen at this time.

�� For further information, see CA-IDMS Mapping Facility.

A special system field is a field that has a reserved use in an CA-ADS applica-
tion.

For example, $MESSAGE is a special system field that contains messages (such
as error messages) at runtime. A variable field associated with $MESSAGE can
display those messages to the user.

■ Edit Picture — If you autopaint this map, the length of the field (as defined in
the dictionary) will be displayed here. If you create this map manually, the length
of the field (as defined in the dictionary) will be displayed here after you press
[Enter].

You can create an external picture used for display by entering a different value in
Edit picture. For example, you might want to change 9(4).99 to $9(4).99 for a
monetary value for display purposes.

■ Display intensity — You can specify the runtime display intensity for the variable
map field.

The default, 1 (Normal), causes the field to be displayed at normal intensity. You
specify 2 (Bright) to make a field display at bright intensity or 3 (Hidden) to
make a field invisible to the user.

■ At end of field — You can specify whether the user is restricted from typing
beyond the end of the variable map field.

The default, 1 (Auto-tab), specifies that the field is explicitly delimited. In this
case, the user cannot type beyond the end of the field. The cursor will skip to the
next unprotected field when the user fills the current field with characters.

2 (Lock keyboard) causes the keyboard to lock when the user attempts to enter
data beyond the end of the field.

3 (Take no action) specifies that the field is not explicitly delimited. In this case,
the user can type beyond the end of the field (although excess characters are trun-
cated on input).

Chapter 8. Defining a Screen Display Using MAPC 8-23

8.3 Instructions

■ Unprotected (/) — You can specify whether the user can enter data into the vari-
able map field. Spacing over the slash (/) indicates that the map field is protected
and restricts the user from changing the contents of the field.

■ Required (/) — You can specify whether the user must enter data into the vari-
able map field. Entering a nonblank character indicates that data must be entered
into the field before the map data will be processed.

■ Automatically edited (/) — You can enable the automatic data editing feature of
CA-ADS.

For map XXXMAP, you will enable this feature for numeric fields (such as the
field that displays department numbers) to make them readable.

■ Skipped by tab key (/) — You can specify that that tab key will not stop on this
map field.

�� For more information on using Field Definition screen prompts, see the CA-IDMS
Mapping Facility.

XXXMAP field specifications: The following table summarizes the specifications
that you will make when you edit map fields in this step. You will edit each field
definition as indicated in this table.

Location of field on
map

Purpose of field Specifications for field

After FUNCTION
literal field (in the
upper left corner)

Displays the name
of the application
function being exe-
cuted at runtime

Protected

Bright display

DEPARTMENT
INFORMATION
literal field

Displays the title for
the screen

Bright display

After DEPARTMENT
ID literal field

Displays a depart-
ment's unique ID
number

Auto-tab

Automatically edited

After NAME literal
field

Displays a depart-
ment's name

Auto-tab

Pad character - spaceY

After HEAD ID literal
field

Displays the ID
number for the head
of the department

Auto-tab

Automatically edited

Last field on the map
(on the bottom right
side)

Displays runtime
messages to the use

Element name: AGR-MESSAGE

Length: 8? bytes

Y The pad character is defined

on page 2 of the Field

Definition screen.

8-24 CA-ADS User Guide

8.3 Instructions

Modifying XXXMAP: Modify the variable field shown on the Field Definition
screen (AGR-CURRENT-FUNCTION).

Note: The FUNCTION literal field will not be available for modification because you
did not select it on the Layout screen.

Notice that:

■ The record element (AGR-CURRENT-FUNCTION) is already displayed for the
element name.

■ The position of the variable field is shown.

■ The edit picture shows the actual length of the function variable field.

■ Several defaults are indicated.

To enter the field specifications shown in the preceding table, enter 2 following the
Display intensity prompt to indicate bright. Space over the slash following Unpro-
tected to make this a protected field.

R S
 Field Definition Page 1 of 7

 Map name: XXXMAP Version: 1

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 ;FUNCTION: ;________

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 Field at row 1 column 1 Drop field (/) _

Element name: AGR-CURRENT-FUNCTION Subscript

 In record ADSO-APPLICATION-GLOBAL-RECORD Version 1

 Edit Picture X(8)

 Display intensity 2 1. Normal 2. Bright 3. Hidden

At end of field 1 1. Auto-tab 2. Lock keyboard 3. Take no action

Unprotected (/) Required (/). _

Automatically edited (/) / Skipped by tab key (/) _

 DC366??4 Specify the variable field and any attributes

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

W X

After you press [Enter], MAPC redisplays the Field Definition screen with a message:

■ Map options processed successfully is returned when the definition contains no
errors.

■ An error message is returned when MAPC detects an error in your definition. In
this case, read the message to determine the problem. You can type over any
errors and press [Enter] again.

When the current field definition is correct, press [PF5] to see the next definition to be
enhanced.

Chapter 8. Defining a Screen Display Using MAPC 8-25

8.3 Instructions

8.3.8 Step 8: Edit literal fields

The next field selected on the Layout screen was the title, DEPARTMENT INFOR-
MATION. When you press [PF5] from the previous Field Definition screen, the
Literal Definition screen is displayed.

In this step, you will edit a literal field's definition to determine what the field will
look like at runtime. You access the Literal Definition screen from the Layout screen
by pressing [PF5] after you have selected fields from the screen, or by pressing [PF5]
from another definition screen (either Field or Literal Definition).

There are two pages of data field screens. Navigate between these screens using [PF7]
or [PF8], or move directly to the desired page by overtyping the page number.

Sample Literal Definition screen - page 1

R S
 Literal Definition Page 1 of 2

 Map name: XXXMAP Version: 1

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

DEPARTMENT INFORMATION

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 Literal at row 4 column 24 Drop literal (/) _

 Display intensity 1 1. Normal 2. Bright 3. Hidden

Highlighting . . . _ 1. Blink 2. Reverse video 3. Underline

Color 8 1. White 3. Green 5. Yellow 7. Turquoise

2. Red 4. Blue 6. Pink 8. Device default

Outline options (/) _ Top _ Bottom _ Left _ Right

Sensitive to light pen (/) _

 DC3665?5 Select literal field attributes

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

W X

Notice that each definition screen shows the field to be defined plus two scales to help
you position the field.

You use the Literal Definition screen to edit one map field at a time. After you edit a
field (using [PF8] if you need to go to the second page), press PR5. MAPC displays
either the Field Definition screen or the Literal Definition screen for the next field that
you've selected.

When you've edited all selected fields, MAPC returns you to the Main Menu screen.

Note: Pressing [Enter] on any screen causes it to redisplay so that you can make
additional changes if necessary.

8-26 CA-ADS User Guide

8.3 Instructions

Prompts: In this step, you will use the following prompts on page 1 the Literal
Definition screen:

■ Display intensity — You can specify the runtime display intensity for the literal
map field.

The default, 1 (Normal), causes the field to be displayed at normal intensity. You
specify 2 (Bright) to make a field display at bright intensity or 3 (Hidden) to
make a field invisible to the user.

�� For more information on using Literal Definition screen prompts, see the CA-IDMS
Mapping Facility.

Modifying XXXMAP: Modify the literal field shown on the Literal Definition
screen.

R S
 Literal Definition Page 1 of 2

 Map name: XXXMAP Version: 1

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 DEPARTMENT INFORMATION

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 Literal at row 4 column 24 Drop literal (/) _

 Display intensity 2 1. Normal 2. Bright 3. Hidden

Highlighting . . . _ 1. Blink 2. Reverse video 3. Underline

Color 8 1. White 3. Green 5. Yellow 7. Turquoise

2. Red 4. Blue 6. Pink 8. Device default

Outline options (/) _ Top _ Bottom _ Left _ Right

Sensitive to light pen (/) _

 DC3665?1 Map options processed successfully

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

W X

After you press [Enter], MAPC redisplays the Literal Definition screen with a
message:

■ Map options process successfully is returned when the definition contains no
errors.

■ An error message is returned when MAPC detects an error in your definition. In
this case, read the message to determine the problem. You can type over any
errors and press [Enter] again.

When the current field definition is correct, press [PF5] to see the next definition to be
enhanced.

Chapter 8. Defining a Screen Display Using MAPC 8-27

8.3 Instructions

Defining the variable field, DEPT-ID-0410: The next variable field according to
the previous table, DEPT-ID-0410, is automatically edited and associated with the
auto-tab attribute. These attributes are defaults, and no change needs to be made to
this variable field definition on the Field Definition screen.

Defining the variable field, DEPT-NAME-0410: Edit the next variable field
according to the previous table. This variable fields requires the auto-tab attribute and
a pad character.

Note: The pad character is specified on page 2 of the Field Definition screen.

R S
 Field Definition Page 1 of 7

 Map name: XXXMAP Version: 1

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

;NAME: ;_______________________________

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 Field at row 7 column 32 Drop field (/) _

Element name: DEPT-NAME-?41? Subscript

 In record DEPARTMENT Version 1

 Edit Picture X(45)

 Display intensity 1 1. Normal 2. Bright 3. Hidden

At end of field 1 1. Auto-tab 2. Lock keyboard 3. Take no action

Unprotected (/) / Required (/). _

Automatically edited (/) / Skipped by tab key (/) _

 DC366??4 Specify the variable field and any attributes

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

W X

Auto-tab is the default.

To define a pad character, you must go to the second page of the Field Definition
screen by pressing [PF8].

Sample Field Definition screen — Page 2

8-28 CA-ADS User Guide

8.3 Instructions

R S
Map Read/Write Options Page 2 of 7

 Map name: XXXMAP Version: 1

 Element name DEPT-NAME-?41? Subscript

 In record DEPARTMENT Version 1

 Map Read Transmit data entry (/) /

 options Zero when null (/). /

Translate to upper case (/) _

Justify data. 1 1. Left 2. Right

Pad character format . Display _

Hexadecimal . . 4!

 Map Write Blank when zero (/) _

 options Underscore blank fields (/) _

Display without trailing blanks _

Set modified data tag (/) _

Transmit. 1 1. Data and attribute byte 3. Erase field

2. Attribute byte only 4. Nothing

 DC3664?4 Select input/output edit options

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

W X

 Screen prompts

■ Pad character format — You can identify a pad character for a map field.

For map XXXMAP, you will assign a pad character to the field that displays
department names. Entering "40" (the hexadecimal equivalent of a blank) next to
Hexadecimal for this field ensures that remaining characters are not stored if the
user replaces a long department name (for example, SYSTEMS ENGINEERING
DEPARTMENT) with a shorter name (for example, SYSTEMS GROUP) and then
clears the rest of the field by pressing the ERASE EOF key.

When the current field definition is correct, press [PF5] to see the next definition to be
enhanced.

Defining the variable field, DEPT-HEAD-ID-0410: You can edit the next vari-
able field, DEPT-HEAD-ID-0410, according to the previous table:

Chapter 8. Defining a Screen Display Using MAPC 8-29

8.3 Instructions

R S
 Field Definition Page 1 of 7

 Map name: XXXMAP Version: 1

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 ;HEAD ID..: ;____

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 Field at row 7 column 32 Drop field (/) _

Element name: DEPT-HEAD-ID-?41? Subscript

 In record DEPARTMENT Version 1

 Edit Picture 9(4)

 Display intensity 1 1. Normal 2. Bright 3. Hidden

At end of field 1 1. Auto-tab 2. Lock keyboard 3. Take no action

Unprotected (/) Required (/). _

Automatically edited (/) / Skipped by tab key (/) _

 DC366??4 Specify the variable field and any attributes

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

W X

The default is yes for Automatically edited and Auto-tab for At end of field.

When the current field definition is correct, press [PF5] to see the next definition to be
enhanced.

Modifying the length of the message field: You can edit the next variable
field, the message field, according to the previous table:

R S
 Field Definition Page 1 of 7

 Map name: XXXMAP Version: 1

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 ;
_

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 Field at row 21 column 79 Drop field (/) _

Element name: AGR-MESSAGE Subscript

 In record ADSO-APPLICATION-GLOBAL-RECORD Version 1

 Edit Picture x(8!)

 Display intensity 1 1. Normal 2. Bright 3. Hidden

At end of field 1 1. Auto-tab 2. Lock keyboard 3. Take no action

Unprotected (/) / Required (/). _

Automatically edited (/) / Skipped by tab key (/) _

 DC366??4 Specify the variable field and any attributes

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

W X

Change the length to 80. The Edit picture is automatically updated when you press
[Enter].

8-30 CA-ADS User Guide

8.3 Instructions

When you are finished editing fields, you can compile the map, as shown in the next
step.

Press [PF5] to return to the Main Menu so that you can compile the map.

8.3.9 Step 9: Compile the map

When you compile a map, MAPC creates a load module that incorporates all of your
specifications. You compile an map by selecting the Compile activity from the the
action bar on the Main Menu screen.

You compile the XXXMAP map as shown:

Compiling the map

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile Map Compiler

2. View messages

 ----------------------- International, Inc.

 F3=Exit

Map name XXXMAP

Map version 1

Dictionary name DEMO

Dictionary node ________

Screen _ 1. General options

2. Map-Level help text definition

3. Associated records

 4. Layout

5. Field definition

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

To compile the application, position the cursor on the Compile item on the action bar
and press [Enter]. You can position the cursor on Compile by:

■ Tabbing to Compile and pressing [Enter]

■ Pressing [PF10] to move to the action bar and then tabbing to Compile and
pressing [Enter]

■ Typing compile on the command line and pressing [Enter]

Once you have displayed the Compile action item, press [Enter] to compile the map.

Chapter 8. Defining a Screen Display Using MAPC 8-31

8.3 Instructions

After you press [Enter] to compile the map, MAPC displays messages to indicate
whether the map has been compiled successfully. You will receive a confirming
message if the map has compiled successfully.

An error message is displayed when the application cannot be compiled because of an
error. In this case, you can display diagnostic information by selecting the View mes-
sages option on the Compile activity on the action bar. Based on this information,
you can correct the map and then try to compile the application again.

8.3.10 Exit from MAPC

You can return directly to DC/UCF by pressing [PF3]. Alternatively, you can use the
Switch activity on the action bar of the Main Menu screen to transfer to another devel-
opment tool.

In this sample session, you'll exit to DC/UCF so you can execute your application
structure. Press [PF3] to exit.

Note: If you suspend MAPC successfully compiling the current map definition,
MAPC saves the suspended definition in a queue record associated with your user ID.
In an actual production environment, other users will not be able to access the map
definition. To enable them to access the definition, specify the Release option from
the Modify activity on the action bar on the Main Menu.

After you exit from MAPC, you can display your map as described below.

8.3.11 Optionally display the map

Map XXXMAP will be displayed at runtime by dialogs that you define in the next
chapter (Chapter 9, “Defining Dialogs Using ADSC” on page 9-1). To display the
map before defining any dialogs, do either of the following:

■ In MAPC, you can display the map on the MAPC Map Image screen. You will
do this later in this manual, in Chapter 11, “Modifying a Map Using MAPC” on
page 11-1.

■ From DC/UCF, where you are now, you can display the map by issuing a
SHOWMAP command.

Both of the above methods allow you to see how the map will look to an user at
runtime. For example, start-field characters are not displayed on the screen; bright
fields are displayed in bright intensity on the screen.

Since you have exited from MAPC, you can display map XXXMAP directly from
DC/UCF:

showmap xxxmap

 [Enter]

8-32 CA-ADS User Guide

8.3 Instructions

R S

 FUNCTION:

 DEPARTMENT INFORMATION

 DEPARTMENT ID:

NAME:

HEAD ID ..:

 NEXT RESPONSE:

W X

Testing the map: While displaying the map, test out how convenient the map is to
use. For example:

■ Try typing data into unprotected variable fields

Variable fields on the displayed map do not display or store real data.

■ Try pressing the tab key to advance the cursor from field to field.

When you press [Enter], you return to the DC/UCF display.

Chapter 8. Defining a Screen Display Using MAPC 8-33

8.4 Summary

 8.4 Summary

In this chapter, you defined a screen, or map, by using MAPC. XXXMAP contains two
types of fields:

■ Literal fields — At runtime, literal fields display literal strings.

■ Variable fields — At runtime, variable fields display stored values and allow
users to input values.

You defined the layout of fields on the map:

1. You named the records that would appear on the map.

2. You named the elements of those records that would be displayed.

3. You used the autopaint facility of MAPC to create a map automatically.

4. You modified the placement of the elements and added further literal and
variable fields.

5. You edited fields by using the Field Definition and Literal Definition screens.
You associated each map variable field, not already associated, with a record
element or special system field. You also provided additional field characteristics,
such as a pad character.

A map can be used by any number of dialogs. For example, XXXMAP is used by
dialogs XXXDADD and XXXDUPD in the sample Department application. You will
define these dialogs in Chapter 9, “Defining Dialogs Using ADSC” on page 9-1.

8-34 CA-ADS User Guide

Chapter 9. Defining Dialogs Using ADSC

9.1 Introduction . 9-3
9.2 Overview . 9-4
9.3 Instructions for defining dialogs . 9-8

9.3.1 Step 1: Invoke ADSC . 9-8
9.3.2 Step 2: Define dialog XXXDADD . 9-9
9.3.3 Step 3: Name the associated map . 9-11
9.3.4 Step 4: Create the XXXDADD dialog load module 9-13
9.3.5 Step 5: Define and compile dialog XXXDUPD 9-14
9.3.6 Exit from ADSC . 9-16

9.4 Instructions for executing the application 9-17
9.4.1 Step 1: Invoke the application . 9-17
9.4.2 Step 2: Test features of the prototype 9-18
9.4.3 Step 3: Exit from the application . 9-24

9.5 Summary . 9-26

Chapter 9. Defining Dialogs Using ADSC 9-1

9-2 CA-ADS User Guide

9.1 Introduction

 9.1 Introduction

As the next step in defining an application, you define dialogs by using the CA-ADS
dialog compiler (ADSC). The XXXDADD and XXXDUPD dialogs defined in this
chapter are intended for use in the Department application introduced in Chapter 6,
“Overview of CA-ADS Application Development” on page 6-1.

This chapter includes:

■ An overview of developing dialogs for CA-ADS applications

■ Instructions for defining the sample XXXDADD and XXXDUPD dialogs

■ Instructions for executing the sample Department application

■ A summary of what you've accomplished in this chapter

Chapter 9. Defining Dialogs Using ADSC 9-3

9.2 Overview

 9.2 Overview

To complete the prototype Department application, you need to define dialogs for the
ADDDEP, MODDEP, and DELDEP dialog functions that you created in Chapter 7,
“Defining an Application Structure Using ADSA” on page 7-1. When you created
ADDDEP, you named XXXDADD as the associated dialog. When you created the
MODDEP and DELDEP dialog functions, you named XXXDUPD as the associated
dialog for each function. The XXXDADD and XXXDUPD dialogs did not exist when
you named them in Chapter 7.

In this chapter, you will define the dialogs XXXDADD and XXXDUPD. The diagram
below shows how XXXDADD and XXXDUPD fit into the Department application.
Function ADDDEP invokes dialog XXXDADD at runtime. Both MODDEP and
DELDEP invoke dialog XXXDUPD.

Note: You can substitute your initials for XXX in the dialog names.

What is a dialog: A dialog is an executable module that consists of components
defined by using other development tools. For example, a dialog can include a map
defined using MAPC, and modules of process code defined using the IDD menu
facility.

9-4 CA-ADS User Guide

9.2 Overview

At runtime, a dialog:

1. Displays a screen to a user

2. Retrieves entries made by the user

Dialogs in the Department application: For example, in the Department applica-
tion:

■ Dialog XXXDADD displays a screen that allows users to add department records
to the database.

■ Dialog XXXDUPD displays a screen that allows the user to modify or delete
existing department records.

Process code can be executed both before the dialog's screen is displayed and after
user input is retrieved.

Runtime execution: Dialogs are executed at runtime whenever control passes to
the dialog functions with which they are associated. For example, you associated
dialog XXXDADD with the ADDDEP dialog function when you defined ADDDEP in
7.3.6.1, “Dialog functions” on page 7-24. At runtime, dialog XXXDADD will be exe-
cuted whenever a user invokes the ADDDEP function.

Note: It is possible to create mapless dialogs that consist only of process logic. For
example, a mapless dialog can be defined to perform database operations. You
will not create any mapless dialogs for the sample Department application.

Dialog components: As shown in the diagram, a dialog can consist of several
components. When you are developing dialogs for a prototype application, it is only
necessary to include maps in the dialogs. Defining basic, skeleton dialogs for a proto-
type application allows users to execute the application and review the screen displays.
Later in the application development cycle, you define process modules that perform
processing for the dialogs.

Chapter 9. Defining Dialogs Using ADSC 9-5

9.2 Overview

In this chapter, you will define skeleton dialogs by using the CA-ADS dialog com-
piler (ADSC). A typical ADSC screen is shown below:

9-6 CA-ADS User Guide

9.2 Overview

R S
 ─

 Add Modify Compile Delete Display Switch

 ─ .__.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

 ─

 Dialog name ________

 Dialog version ____

 Dictionary name ________

 Dictionary node ________

 ─

 ─ Screen 1 1. General options

 2. Assign maps

 3. Assign database

 4. Assign records and tables

 5. Assign process modules

 ─

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Chapter 9. Defining Dialogs Using ADSC 9-7

9.3 Instructions for defining dialogs

9.3 Instructions for defining dialogs

You use ADSC to define dialogs. To define a skeleton dialog, you invoke ADSC,
specify basic information about the dialog, and then create a load module for the
dialog.

Steps: In this chapter, you will define skeleton versions of dialogs XXXDADD and
XXXDUPD by using ADSC. You will:

 1. Invoke ADSC.

2. Define the dialog XXXDADD.

3. Name the associated map.

4. Create a load module for the dialog.

5. Define and compile dialog XXXDUPD.

After you compile dialogs XXXDADD and XXXDUPD, you can exit from ADSC.

Dialogs for the Department application: The following table lists specifications
for defining skeleton dialogs XXXDADD and XXXDUPD. If you need additional
information at any time about the use of ADSC, see B.4, “Using ADSC” on
page B-16.

Dialog name Associated
map

Purpose of dialog

XXXDADD XXXMAPY Allows a user to add a new department record.
XXXDADD is invoked by the ADDDEP dialog func-
tion.

XXXDUPD XXXMAPY Allows a user to modify or delete an existing depart-
ment record. XXXDADD is invoked by the
MODDEP and DELDEP dialog functions.

Y You defined map XXXMAP earlier in this sample application development

 session

 9.3.1 Step 1: Invoke ADSC

You can invoke ADSC from CA-IDMS/DC or CA-IDMS/UCF (DC/UCF) by speci-
fying the task code for ADSC (for example, ADSCT) in response to the prompt pre-
sented by DC/UCF. For example, you can invoke ADSC from CA-IDMS/DC as
shown:

ENTER NEXT TASK CODE:

adsct

Press the ENTER

key to input the -─� [Enter]

task code for

 ADSC.

9-8 CA-ADS User Guide

9.3 Instructions for defining dialogs

For more information on task codes for CA-ADS development tools, see 6.3, “Appli-
cation development tools” on page 6-7.

ADSC begins by displaying the Main Menu screen. You define a dialog by using the
Main Menu screen as described below.

9.3.2 Step 2: Define dialog XXXDADD

You use the Main Menu screen to specify basic information about a dialog. A
sample Main Menu screen is shown below:

Sample Main Menu screen

R S

Add Modify Compile Delete Display Switch

 .___.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

Dialog name ________

Dialog version ____

Dictionary name ________

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Screen prompts: When you define a skeleton dialog, you typically enter informa-
tion after one or more of the following Main Menu screen prompts:

■ Dialog name — You must specify the same dialog name that you specified when
you used ADSA to define the associated dialog function.

For example, when you define dialog XXXDADD, you must use the same name
that you used when you defined the associated ADDDEP function in Chapter 7,
“Defining an Application Structure Using ADSA” on page 7-1.

■ Dialog version — You must specify a version number, in the range 1 through
9999. The default version is 1.

■ Dictionary name — You must specify the same dictionary (if any) as you speci-
fied for your application definition in Chapter 7, “Defining an Application Struc-
ture Using ADSA” on page 7-1. The correct dictionary name may already be
displayed.

Chapter 9. Defining Dialogs Using ADSC 9-9

9.3 Instructions for defining dialogs

■ Dictionary node — You must specify the same dictionary node (if any) as you
specified for your application definition. The correct dictionary node may already
be displayed.

Defining XXXDADD dialog: You can define the XXXDADD dialog on the Main
Menu screen:

R S

Add Modify Compile Delete Display Switch

 .___.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

Dialog name xxxdadd
Dialog version 1
Dictionary name demo
Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Adding the dialog: To add the dialog, position the cursor on the Add item on the
action bar and press ENTER. You can position the cursor on Add by:

■ Tabbing to Add and pressing [Enter]

■ Pressing [PF10] to move to the action bar and then tabbing to Add and pressing
[Enter]

■ Typing add on the command line and pressing [Enter]

R S
Add Modify Compile Delete Display Switch

 .___.

 Copy from dialog A-ADS Dialog Compiler

 Name ________

 Version 1 ter Associates International, Inc.

 F3=Exit

Dialog name XXXAPPL_

Dialog version 1

Dictionary name DEMO____

Dictionary node ________

W X

9-10 CA-ADS User Guide

9.3 Instructions for defining dialogs

Once you have displayed the Add action item, press [Enter] to add the dialog to the
dictionary. After you press [Enter], the action is confirmed. If there is an error, an
error message is displayed.

9.3.3 Step 3: Name the associated map

After you specify the name of the dialog, you can name the associated map on the
Map Specifications screen. You reach the Map Specifications screen by entering 2
next to Screen on the Main Menu screen.

R S

Add Modify Compile Delete Display Switch

 .___.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

Dialog name XXXDADD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 2 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

The following screen is displayed.

Sample Map Specifications screen

Chapter 9. Defining Dialogs Using ADSC 9-11

9.3 Instructions for defining dialogs

R S
 Map Specifications

 Dialog XXXDADD Version 1

Map name ________ Input map ________

Version ____ Version ____

Label ________

Paging options _ 1. Wait

2. No Wait Output map ________

3. Return Version ____

Label ________

Paging mode . . . _ Update

_ Backpage Suspense file label ________

_ Auto display

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Switch Right

W X

 Screen prompts

■ Map name — You must specify the name of a map created using MAPC. (See
Chapter 8, “Defining a Screen Display Using MAPC” on page 8-1.)

■ Map version — You must specify an existing version of this map.

Associating a map with the dialog

R S
 Map Specifications

 Dialog XXXDADD Version 1

Map name XXXMAP Input map ________

Version 1 Version ____

Label ________

Paging options _ 1. Wait

2. No Wait Output map ________

3. Return Version ____

Label ________

Paging mode . . . _ Update

_ Backpage Suspense file label ________

_ Auto display

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Switch Right

W X

9-12 CA-ADS User Guide

9.3 Instructions for defining dialogs

After you successfully define skeleton dialog XXXDADD, you can compile a load
module for the dialog as described in the next step. Request the Main Menu by
pressing [PF3].

9.3.4 Step 4: Create the XXXDADD dialog load module

When you compile a dialog, ADSC creates a load module that incorporates all of your
specifications. You compile a dialog by selecting the Compile activity from the the
action bar on the Main Menu screen.

Compiling the dialog: You compile the XXXDADD dialog as shown:

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile log Compiler

2. Display messages

------------------------- nternational, Inc.

 F3=Exit

Dialog name XXXDADD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

To compile the application, position the cursor on the Compile item on the action bar
and press ENTER. You can position the cursor on Compile by:

■ Tabbing to Compile and pressing [Enter]

■ Pressing [PF10] to move to the action bar and then tabbing to Compile and
pressing [Enter]

■ Typing compile on the command line and pressing [Enter]

Once you have displayed the Compile action item, press [Enter] to compile the dialog.

After you press [Enter] to compile the dialog, ADSC displays a message to indicate
whether the dialog was compiled successfully.

A confirming message is displayed on the Main Menu screen if the dialog was com-
piled successfully.

Chapter 9. Defining Dialogs Using ADSC 9-13

9.3 Instructions for defining dialogs

If the dialog could not be compiled, a different message, depending on the nature of
the error condition, is displayed. In this case, read the message to determine the
problem. After correcting all indicated problems, compile the dialog again.

After you successfully compile the XXXDADD dialog, you can define and compile
dialog XXXDUPD as described below.

9.3.5 Step 5: Define and compile dialog XXXDUPD

To define XXXDUPD, you use the Main Menu screen. If you have just compiled
dialog XXXDADD as described in Step 4, you can define dialog XXXDUPD on the
Main Menu screen by typing over the dialog name on the screen.

The Department application structure you defined earlier associates dialog XXXDUPD
with both dialog functions MODDEP and DELDEP. When you define XXXDUPD,
you must use the same name that you used defining functions MODDEP and
DELDEP.

You use the Main Menu screen to define dialog XXXDUPD:

Name the dialog

R S

Add Modify Compile Delete Display Switch

 .___.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

Dialog name xxxdupd
Dialog version 1
Dictionary name demo
Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Add the dialog to the dictionary by specifying the Add activity from the action bar
on the Main Menu. After adding the dialog, choose the Assign maps option at the
Screen prompt to access the Map Specifications screen.

9-14 CA-ADS User Guide

9.3 Instructions for defining dialogs

Name the map associated with the dialog: Go to the Map Specifications
screen and name the map. The map is the same map as that associated with the
XXXXDADD dialog, XXXMAP.

R S
 Map Specifications

 Dialog XXXDUPD Version 1

Map name XXXMAP Input map ________

Version 1 Version ____

Label ________

Paging options _ 1. Wait

2. No Wait Output map ________

3. Return Version ____

Label ________

Paging mode . . . _ Update

_ Backpage Suspense file label ________

_ Auto display

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Switch Right

W X

Create the load module: After you define the XXXDUPD dialog, you can create
a load module for the dialog. Return to the Main Menu by pressing [PF3] and select
the Compile activity.

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile log Compiler

2. Display messages

------------------------- nternational, Inc.

 F3=Exit

Dialog name XXXDUPD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Chapter 9. Defining Dialogs Using ADSC 9-15

9.3 Instructions for defining dialogs

After you successfully compile the XXXDUPD dialog, you can exit from ADSC or
use the Switch activity to access another tool.

9.3.6 Exit from ADSC

In this sample session, you'll exit to DC/UCF so you can execute your application
structure again. Press [PF3] to exit from the Main Menu screen to exit.

Note: If you suspend ADSC without successfully compiling the current dialog defi-
nition, ADSC saves the suspended definition in a queue record associated with your
user ID. In an actual production environment, other users will not be able to access
the dialog definition. To enable them to access the definition, specify the Release
option from the Modify activity on the action bar on the Main Menu.

After you exit from ADSC, you can execute your application again as described
below.

9-16 CA-ADS User Guide

9.4 Instructions for executing the application

9.4 Instructions for executing the application

Now that you have defined dialogs for dialog functions ADDDEP, MODDEP, and
DELDEP, all menu, system, and dialog functions in the sample Department application
are executable.

You now can fully test the prototype Department application. To do this, you will:

1. Invoke the application.

2. Test the application to review screen formats and the flow of control between
functions at runtime.

3. Exit from the application when finished.

9.4.1 Step 1: Invoke the application

You execute an CA-ADS application under the CA-ADS runtime system. When you
executed the partially defined Department application in Chapter 7, “Defining an
Application Structure Using ADSA” on page 7-1, you invoked the application by
entering two task codes. The first task code (ADS) invoked the runtime system; the
second (XXXDEPT) invoked the application itself.

Dynamically associating the task code: To make it easier to execute the appli-
cation, you can dynamically associate the application's task code with the runtime
system. To do this, you issue a DCMT VARY DYNAMIC TASK command while
using DC/UCF.

For example, you can enter this DCMT command while using CA-IDMS/DC as
shown:

ENTER NEXT TASK CODE:

dcmt vary dynamic task xxxdept invokes adsorun1 .
 ↑

 │

 Required space

 and period

 [Enter]

ADSORUN1 is the internal name for the CA-ADS runtime system. After you issue
the above DCMT command, entering task code XXXDEPT invokes the runtime system
and then causes the Department application to be executed. This association remains
in effect until the system is recycled.

Invoke the application: You can now invoke the Department application from
DC/UCF by entering the task code for the application:

Chapter 9. Defining Dialogs Using ADSC 9-17

9.4 Instructions for executing the application

xxxdept
 ↑

 │

 The Department application's

 task code has been associated

 with the runtime system.

 [Enter]

DEPTMENU screen: The DEPTMENU screen is the first screen displayed.

R S

DIALOG: PAGE: 1 OF: 1

 DATE: ?8/19/99 NEXT PAGE:

DEPARTMENT INFORMATION APPLICATION

 MAIN MENU

_ ADD (PF4) ADD A NEW DEPARTMENT

_ MOD (PF5) MODIFY A DEPARTMENT

_ DEL (PF6) DELETE A DEPARTMENT

 _ EXIT (PF9) TERMINATE APPLICATION

RESPONSE: SEND DATA-─� MODE: STEP

W X

After you invoke the Department application from DC/UCF, you can test out features
that you've implemented in the prototype Department application, as described below.

9.4.2 Step 2: Test features of the prototype

The first function executed in the sample application is DEPTMENU. According to
your application design, the following responses are valid from DEPTMENU:

■ ADD selects dialog function ADDDEP. In the final application, ADDDEP will
allow users to add new department information in the database.

■ MOD selects dialog function MODDEP, which will allow users to modify
existing department information in the database.

■ DEL selects dialog function DELDEP, which will allow users to delete depart-
ment information.

■ EXIT selects system function QUIT, which will allow users to leave the applica-
tion.

Test out each of the above responses while you are executing the Department applica-
tion prototype. For example, try specifying the ADD response:

9-18 CA-ADS User Guide

9.4 Instructions for executing the application

Specifying the ADD response: To specify the ADD response, you can use any of
the following methods:

■ Press [PF4] to select the ADD response

■ Type a nonblank character in front of a response and press [Enter] to select the
response.

■ Type the response name (ADD) after the RESPONSE: prompt, and press [Enter].

R S

DIALOG: PAGE: 1 OF: 1

 DATE: ?8/19/99 NEXT PAGE:

DEPARTMENT INFORMATION APPLICATION

 MAIN MENU

x ADD (PF4) ADD A NEW DEPARTMENT

_ MOD (PF5) MODIFY A DEPARTMENT

_ DEL (PF6) DELETE A DEPARTMENT

 _ EXIT (PF9) TERMINATE APPLICATION

RESPONSE: add SEND DATA-─� MODE: STEP

W X

ADDDEP function: The ADDDEP function is displayed with the XXXMAP.

R S
 FUNCTION: ADDDEP

 DEPARTMENT INFORMATION

DEPARTMENT ID:

 NAME:

HEAD ID ..:

 NEXT RESPONSE:

W X

The ADDDEP function allows the user to enter information about a department. Try
tabbing between variable fields and entering sample department information. You
cannot type anything in the FUNCTION: field because you made it a protected field.

Chapter 9. Defining Dialogs Using ADSC 9-19

9.4 Instructions for executing the application

R S

 FUNCTION: ADDDEP

 DEPARTMENT INFORMATION

DEPARTMENT ID: 9!12
NAME: Application Testing
HEAD ID ..: 3456

 NEXT RESPONSE:

W X

ADDDEP is a skeleton dialog, which means that you haven't added any process logic
to the dialog. The dialog cannot access the database. Therefore, your sample data is
not stored when you press [Enter].

Input-handling operations: Other input-handling operations are performed auto-
matically at runtime. For example, your sample input is:

■ Echoed on the screen after you press [Enter].

■ Tested for invalid values and redisplayed in bold when errors are found.

For example, try entering invalid values in the DEPARTMENT ID and HEAD ID
variable fields:

R S

 FUNCTION: ADDDEP

 DEPARTMENT INFORMATION

 DEPARTMENT ID: xyz
NAME: Quality Assurance
HEAD ID ..: xyz

 RESPONSE:

W X

In this case, the runtime system returns an error message:

CCERROR AT 7,24CC CCERROR AT 9,24CC

Nonnumeric data is invalid for the DEPARTMENT ID and HEAD ID variable fields
because you enabled the CA-ADS automatic editing feature for these numeric fields in
in Chapter 8.

9-20 CA-ADS User Guide

9.4 Instructions for executing the application

�� For more information on how automatic editing can be used to keep users from
entering invalid values, see the CA-IDMS Mapping Facility.

You also can test the NEXT RESPONSE variable field. You can try entering unde-
fined responses (for example, UPDATE) or responses that are valid for the application
but not for the ADDDEP function (for example, MOD). In fact, a user testing the
Department application prototype probably would try to access the MODDEP function
from ADDDEP to see if newly added department information can be modified easily
if, for example, the department name is misspelled.

Enter new department values on the screen, and then specify the MOD response to try
accessing MODDEP from ADDDEP:

Specifying the MOD response from ADDDEP

R S

 FUNCTION: ADDDEP

 DEPARTMENT INFORMATION

DEPARTMENT ID: 4567
NAME: System Software Division
HEAD ID ..: 9521

NEXT RESPONSE: mod

W X

R S

 FUNCTION: ADDDEP

 DEPARTMENT INFORMATION

DEPARTMENT ID: 4567

NAME: SYSTEM SOFTWARE DIVISION

HEAD ID ..: 9521

 RESPONSE:

DC172??8 CCC UNACCEPTABLE RESPONSE. PLEASE TRY AGAIN CCC

W X

Chapter 9. Defining Dialogs Using ADSC 9-21

9.4 Instructions for executing the application

Even though MOD is defined for the application, it is not valid from the ADDDEP
function. According to your application definition, only the following responses are
valid from ADDDEP:

■ BACK selects system function POP, which returns execution to the previous
menu function (in this case, DEPTMENU).

■ EXIT selects system function QUIT, which terminates the application.

Display the MODDEP function: To display the MODDEP function from
ADDDEP, you must first access a function from which MODDEP is valid. Since
MOD is valid for the DEPTMENU function, use the BACK response to return to
DEPTMENU, and then invoke MOD from DEPTMENU:

R S

 FUNCTION: ADDDEP

 DEPARTMENT INFORMATION

 DEPARTMENT ID: 4567

NAME: SYSTEM SOFTWARE DIVISION

HEAD ID ..: 9521

 RESPONSE: back

W X

Choose MOD from the DEPTMENU screen to display the MODDEP function.

R S

DIALOG: PAGE: 1 OF: 1

 DATE: ?8/19/99 NEXT PAGE:

DEPARTMENT INFORMATION APPLICATION

 MAIN MENU

_ ADD (PF4) ADD A NEW DEPARTMENT

x MOD (PF5) MODIFY A DEPARTMENT

_ DEL (PF6) DELETE A DEPARTMENT

 _ EXIT (PF9) TERMINATE APPLICATION

W X

The MODDEP function is displayed

9-22 CA-ADS User Guide

9.4 Instructions for executing the application

R S
 FUNCTION: MODDEP

 DEPARTMENT INFORMATION

DEPARTMENT ID:

 NAME:

HEAD ID ..:

W X

Display the DELDEP function: To display function DELDEP, you first return to
the DEPTMENU function. From DEPTMENU, you can invoke DELDEP as shown:

R S

 FUNCTION: MODDEP

 DEPARTMENT INFORMATION

DEPARTMENT ID: ????

 NAME:

HEAD ID ..: ????

RESPONSE: back

W X

Select the DEL response to display DELDEP

R S

DIALOG: PAGE: 1 OF: 1

 DATE: ?8/19/99 NEXT PAGE:

DEPARTMENT INFORMATION APPLICATION

 MAIN MENU

_ ADD (PF4) ADD A NEW DEPARTMENT

_ MOD (PF5) MODIFY A DEPARTMENT

x DEL (PF6) DELETE A DEPARTMENT

 _ EXIT (PF9) TERMINATE APPLICATION

W X

The DELDEP function is displayed.

Chapter 9. Defining Dialogs Using ADSC 9-23

9.4 Instructions for executing the application

R S

 FUNCTION: DELDEP

 DEPARTMENT INFORMATION

 DEPARTMENT ID: ????

 NAME:

HEAD ID ..: ????

 RESPONSE:

W X

Continue to test the application prototype until you are familiar with the Department
application prototype. When you are finished testing the application, exit from the
application as described below.

9.4.3 Step 3: Exit from the application

When you are ready to exit from the application, select the EXIT response. The EXIT
response invokes the QUIT system response, which terminates the application and
returns control to DC/UCF.

When you defined the Department application structure, you defined EXIT to be avail-
able from all functions in the application. You can exit from the Department applica-
tion by selecting EXIT from any function and pressing the [Enter] key. For example,
while using the DELDEP function, you can exit from the Department application as
shown:

R S

 FUNCTION: DELDEP

 DEPARTMENT INFORMATION

DEPARTMENT ID: ????

 NAME:

HEAD ID ..: ????

RESPONSE: exit

W X

You can also press ────� [PF9]

the control key

associated with EXIT.

9-24 CA-ADS User Guide

9.4 Instructions for executing the application

If you want to execute the prototype again, specify the application's task code to
DC/UCF and press [Enter], as described above in 9.4.1, “Step 1: Invoke the
application” on page 9-17.

Chapter 9. Defining Dialogs Using ADSC 9-25

9.5 Summary

 9.5 Summary

Developers and users can execute a preliminary (that is, prototype) application early
in the development cycle. The prototype can be used to test the user interface of the
application and to provide a milestone in the application development cycle. In this
chapter, you completed and executed the prototype of the Department application. By
executing the prototype, you were able see how a user might use the application.

You created the Department application prototype by defining application components
as described below:

1. You defined the application structure in Chapter 7, “Defining an Application
Structure Using ADSA” on page 7-1. The application structure consists of:

■ Functions, which represent the units of work to be performed by the applica-
tion. You defined menu, system, and dialog functions for the Department
application.

■ Responses, which establish runtime paths between the application functions.

■ Task codes, which establish entry points into the application.

2. You defined a map, or screen display, in Chapter 8, “Defining a Screen Display
Using MAPC” on page 8-1. The map you created will be displayed by the
dialogs in the Department application.

3. You defined skeleton dialogs for the ADDDEP, MODDEP, and DELDEP dialog
functions in this chapter. Defining skeleton dialogs allowed you to execute the
application and test flow of control and screen displays. In later chapters, you
will create modules of process code for the ADDDEP, MODDEP, and DELDEP
dialogs.

Changes to the application: Based on tests made using the prototype, users and
developers often suggest modifications to the application. For example, users who test
out the Department application probably would request that a path be defined that
leads directly from ADDDEP to the MODDEP function.

Other changes to the application may be suggested to make the application conform to
site conventions. For example, one convention is to use the [PF3] to leave an applica-
tion Both of the above changes to the Department application can be made by using
the application compiler (ADSA), as detailed in the next chapter.

Users also can suggest changes to maps. For example, users might request that key
data be displayed in bright intensity and that error messages for variable fields provide
specific information. MAPC is used to make changes to maps, as described in
Chapter 11, “Modifying a Map Using MAPC” on page 11-1.

9-26 CA-ADS User Guide

Chapter 10. Modifying the Application Structure
Using ADSA

10.1 Introduction . 10-3
10.2 Overview . 10-4
10.3 Instructions . 10-6

10.3.1 Step 1: Retrieve the application to be modified 10-6
10.3.2 Step 2: Select responses and functions 10-7
10.3.3 Step 3: Modify the EXIT response 10-8
10.3.4 Step 4: Modify the ADDDEP function 10-9
10.3.5 Step 5: Recompile the application 10-10

10.4 Exit from ADSA . 10-12
10.5 Execute the application . 10-13
10.6 Summary . 10-16

Chapter 10. Modifying the Application Structure Using ADSA 10-1

10-2 CA-ADS User Guide

10.1 Introduction

 10.1 Introduction

Developers and end users can execute the prototype of an CA-ADS application to
review the application's structure and user interface. Based on the prototype, they can
suggest changes to the application. This chapter provides instructions for modifying
the Department application structure.

This chapter includes:

■ An overview of modifying an application structure in the CA-ADS environment

■ Instructions for modifying the sample Department application

■ A summary of what you've accomplished in this chapter

Chapter 10. Modifying the Application Structure Using ADSA 10-3

10.2 Overview

 10.2 Overview

User requests and design alterations can be incorporated easily into a prototype appli-
cation. Minor changes, such as changing the function key that invokes a response, and
major changes, such as adding new responses and functions to the application, can be
performed quickly and easily.

You modify application components by using the same tools you use to define the
components. To modify the Department application structure, you will use the
CA-ADS application compiler (ADSA).

In this chapter, you will use ADSA to:

1. Modify the EXIT response so that [PF3] invokes the response

2. Modify the ADDDEP function so that the MOD response is valid directly from
ADDDEP

The following diagram shows how the modifications affect the structure of the Depart-
ment application. Using ADSA, you will make the MOD response valid from the
ADDDEP function and also change the function key for the EXIT response.
Instructions for modifying the sample application and executing the modified applica-
tion are provided on the following pages.

10-4 CA-ADS User Guide

10.3 Instructions

Chapter 10. Modifying the Application Structure Using ADSA 10-5

10.3 Instructions

 10.3 Instructions

To modify the Department application, you will perform the following steps:

1. Retrieve the Department application.

2. Select responses and functions to modify.

3. Modify the EXIT response.

4. Modify the ADDDEP function.

5. Create a load module for the modified application.

After you modify the application, you can exit from ADSA and execute the application
to see how your changes impact runtime flow of control. If you need additional infor-
mation at any time about the use of ADSA, see Chapter 7, “Defining an Application
Structure Using ADSA” on page 7-1.

10.3.1 Step 1: Retrieve the application to be modified

Invoking ADSA: In order to modify an application, you must first invoke ADSA
and then use ADSA to retrieve the application definition.

You invoke ADSA from CA-IDMS/DC or CA-IDMS/UCF (DC/UCF) by specifying
the task code for ADSA (for example, ADSAT) in response to the prompt presented
by DC/UCF. For example, when using CA-IDMS/DC, you invoke ADSA as shown:

ENTER NEXT TASK CODE:

adsat

 [Enter]

For more information on invoking ADSA, see 7.3.1, “Step 1: Invoke ADSA” on
page 7-9.

ADSA begins by displaying the Main Menu screen. You use the ADSA Main Menu
screen to retrieve an application definition for modification. To retrieve an application,
you typically enter information after one or more of the following Main Menu screen
prompts:

 Screen prompts

■ Application name — You must specify the name (for example, XXXDEPT) that
you used when you defined the application in Chapter 7.

■ Dictionary name — You must specify the same dictionary, if any, as you speci-
fied for your application definition in Chapter 7. The correct dictionary name may
already be displayed in this field.

■ Dictionary node — You must specify the same dictionary node, if any, as you
specified for your application definition in Chapter 7. The correct dictionary node
may already be displayed in this field.

10-6 CA-ADS User Guide

10.3 Instructions

Retrieving the Department application: Use the ADSA Main Menu screen to
retrieve the Department application:

R S
Add Modify Compile Delete Display Switch

 .___.

CA-ADS Application Compiler

Computer Associates International, Inc.

Application name xxxappl
 Application version . . 1

Dictionary name demo
Dictionary node ________

Screen _ 1. General options

2. Responses and Functions

3. Global records

4. Task codes

W X

After you press [Enter], ADSA redisplays the Main Menu screen with a message con-
firming that the application is available for modification.

Note: If the application has not been explicitly released (using the Release option of
the Modify action on the action bar of the Main Menu), naming the application
on the Main Menu screen retrieves that definition for modification. If the
application has been released, you use the ADSA Main Menu screen to check
out the application definition for modification (using the Checkout option of
the Modify action on the action bar of the Main Menu).

For information on checking out an application, see CA-ADS Reference.

If the application has been released, subsequently checked out to another devel-
oper and not released by that developer, you will not be able to check it out.

If you made any errors in your application specification, ADSA displays information
about another application, and/or displays an error message. In either case, make sure
that you typed the correct application name, dictionary, and node, as necessary. You
can type over any errors, and then press [Enter] again.

After you successfully retrieve the Department application, you can modify the EXIT
response.

10.3.2 Step 2: Select responses and functions

In this step, you will select the response and the function that you want to modify
(EXIT response and ADDDEP function).

Chapter 10. Modifying the Application Structure Using ADSA 10-7

10.3 Instructions

Response/Function List screen: Choose 2 at the Screen prompt on the Main
Menu screen and press [Enter]. This will bring you to the Response/Function List
screen. On the Response/Function List screen, select the response and function you
want to change.

R S
 Response/Function List Page 1 of 1

 Application name: XXXAPPL Version: 1

Select Response Assigned Select Function Program/

 (/) name key (/) name/type(1,2,3)C Dialog name

/ EXIT____ PF?9_ _ QUIT____ / _ ________

_ ADD_____ PF?1_ / ADDDEP__ / 1 XXXDADD

_ MOD_____ PF?2_ _ MODDEP__ / 1 XXXDUPD

_ DEL_____ PF?3_ _ DELDEP__ / 1 XXXDUPD

_ BACK____ CLEAR _ POP_____ / _ ________

_ ________ _____ _ DEPTMENU / 3 ________

C Type: 1. Dialog 2. Program 3. Menu

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

Pressing [PF5] will display the Response Definition screen.

10.3.3 Step 3: Modify the EXIT response

Modifying the EXIT response definition: In this step, you will change the
control key for the EXIT response from [PF9] to [PF3]. You use either the
Response/Function List screen or the Response Definition screen to modify an appli-
cation response assigned key. Use the Response Definition screen to modify the EXIT
response in the sample application.

Response Definition screen: Press [PF5] to display the Response Definition
screen for the EXIT response.

Type the name of the new control key over the previous control key:

10-8 CA-ADS User Guide

10.3 Instructions

R S
 Response Definition

Application name: XXXAPPL Version: 1

Response name: EXIT Drop response (/) _

 Function invoked: QUIT

Description TERMINATE APPLICATION

Response type. 1 1. Global 2. Local

Response execution 2 1. Immediate 2. Deferred

Assigned key pf3
Control command. 1 1. Transfer 2. Invoke

 3. Link 4. Return

5. Return continue 6. Return clear

7. Return continue clear 8. Transfer nofinish

9. Invoke nosave 1?. Link nosave

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

After you modify the EXIT response and press [Enter], ADSA redisplays the Response
Definition screen with a confirming message.

As soon as you successfully modify the EXIT response, you can modify the ADDDEP
function. Press [PF5] to access the Function Definition screen for the ADDDEP func-
tion.

10.3.4 Step 4: Modify the ADDDEP function

Make the MOD response valid from ADDDEP by selecting the response on the Func-
tion Definition screen.

Chapter 10. Modifying the Application Structure Using ADSA 10-9

10.3 Instructions

R S
Function Definition (Dialog)

 Application name: XXXAPPL Version: 1

 Function name: ADDDEP Drop function (/) _

 Description . . . ADD DEPARTMENT

 Associated dialog XXXDADD User exit dialog ________

 Default response ________

 Valid Valid

 response(/) Response Key Function response(/) Response Key Function

_ ADD PF?1 ADDDEP _ ________ _____ ________

/ MOD PF?2 MODDEP _ ________ _____ ________

_ DEL PF?3 DELDEP _ ________ _____ ________

/ BACK CLEAR POP _ ________ _____ ________

/ EXIT PF?9 QUIT _ ________ _____ ________

_ ________ _____ ________ _ ________ _____ ________

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

Pressing [PF5] brings you back to the Response/Function List since no other responses
or functions has been selected. Press [PF3] to return to the Main Menu.

Now you can recompile the application as described below.

10.3.5 Step 5: Recompile the application

After you modify an application, you must recompile the application to create an
updated load module for the application. You recompile the Department application
by selecting the Compile activity.

Compiling the application: To compile the application, position the cursor on the
Compile item on the action bar and press [Enter]. You can position the cursor on
Compile by:

■ Tabbing to Compile and pressing [Enter]

■ Pressing [PF10] to move to the action bar and then tabbing to Compile and
pressing [Enter]

■ Typing compile on the command line and pressing [Enter]

10-10 CA-ADS User Guide

10.3 Instructions

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile ation Compiler

2. View messages

----------------------- s International, Inc.

 F3=Exit

Application name XXXAPPL

Application version . . . 1

Dictionary name DEMO

Dictionary node ________

Screen 4 1. General options

2. Responses and Functions

3. Global records

4. Task codes

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Once you have displayed the Compile action item, press [Enter] to compile the appli-
cation.

After you press [Enter] to compile the application, ADSA displays either a confirming
message to indicate the you successfully compiled the application, or an error message
when the application cannot be compiled because of an error.

In the case of compilation errors, you can display diagnostic information by selecting
the View messages activity from the action bar. Based on this information, you can
correct the application and then try to compile the application again.

Chapter 10. Modifying the Application Structure Using ADSA 10-11

10.4 Exit from ADSA

10.4 Exit from ADSA

You can also return directly to DC/UCF by pressing [PF3]. Alternatively, the Switch
activity on the action bar of the Main Menu screen allows you to exit from ADSA and
transfer to another development tool.

In this sample session, you'll exit to DC/UCF so you can execute your application
structure. Press [PF3] to exit.

Note: If you leave ADSA without successfully compiling the current application defi-
nition, ADSA saves the suspended definition in a queue record associated with
your user ID. In an actual production environment, other users will not be able
to access the application definition. To enable them to access the definition,
specify the Release option from the Modify activity on the action bar on the
Main Menu.

After you exit from ADSA, you can execute your application as described below.

10-12 CA-ADS User Guide

10.5 Execute the application

10.5 Execute the application

In the previous steps, you made the following changes to the structure of the Depart-
ment application:

■ You assigned [PF3] to the EXIT response.

■ You made the MOD response valid from the ADDDEP function.

You can now execute the Department application and see how your changes affect the
way that end users of the Department application move from one function to another.

You invoke an application from DC/UCF by entering the task code (XXXDEPT) for
the application. For example, from CA-IDMS/DC, you invoke the Department appli-
cation as shown:

ENTER NEXT TASK CODE:

xxxdept

 [Enter]

For more information on invoking the Department application, see 9.4, “Instructions
for executing the application” on page 9-17.

After you invoke the application, display the ADDDEP function. To test how you
transfer from ADDDEP to function MODDEP, you select the MOD response:

R S

 FUNCTION: ADDDEP

 DEPARTMENT INFORMATION

DEPARTMENT ID: ????

 NAME:

HEAD ID ..: ????

NEXT RESPONSE: mod

W X

The MODDEP function is displayed.

Chapter 10. Modifying the Application Structure Using ADSA 10-13

10.5 Execute the application

R S

 FUNCTION: MODDEP

 DEPARTMENT INFORMATION

DEPARTMENT ID:

 NAME:

HEAD ID ..:

W X

Testing the BACK response: According to your application design, both the
BACK and EXIT responses are valid from MODDEP. Try requesting BACK:

R S

 FUNCTION: MODDEP

 DEPARTMENT INFORMATION

DEPARTMENT ID:

 NAME:

HEAD ID ..:

 NEXT RESPONSE: back

W X

Notice that the BACK function takes you to DEPTMENU, rather than to ADDDEP.
This is because BACK invokes the POP system function, which returns control to the
most recently executed menu in the application.

Pressing [PF3] to invoke the EXIT response: When you are ready to leave the
application, you can test out the EXIT response. You can test the EXIT response from
any function in the Department application. To test EXIT, try pressing [PF3] to select
the EXIT response:

R S

 FUNCTION: MODDEP

 DEPARTMENT INFORMATION

DEPARTMENT ID: ????

 NAME:

HEAD ID ..: ????

W X

10-14 CA-ADS User Guide

10.5 Execute the application

PF3 is now associated --� [PF3]

with the EXIT response

throughout the application.

When you press [PF3], the EXIT response is invoked. The associated system function,
QUIT, exits you from the Department application. To test out other features of the
Department application, you can invoke the application again, as described earlier.

Chapter 10. Modifying the Application Structure Using ADSA 10-15

10.6 Summary

 10.6 Summary

You can use ADSA to modify the application structure at any time. You can use
ADSA to add, modify, and delete functions, responses, and task codes, as necessary.

In this chapter, you used ADSA as follows:

1. You modified the EXIT response to make [PF3] invoke the EXIT response.

2. You modified the ADDDEP function to make the MOD response available
directly from ADDDEP.

You can modify any part of the Department application structure at this stage. For
example:

■ If administrators decide that a particular function is no longer necessary due to
changes in regulations, you can use ADSA to quickly delete the function and the
response that invokes it.

■ If end users decide that a summary or list screen would be useful at some point in
the application, you can use ADSA to define a new function to display the
summary screen. You can then add a response to invoke the new function, and
make other responses valid from the new function.

Additionally, you can modify other application components at any time in an applica-
tion's life cycle. As an application developer, you can make changes to maps, for
example, as soon as end user suggestions are approved. In the next chapter, you will
use MAPC to modify map XXXMAP.

10-16 CA-ADS User Guide

Chapter 11. Modifying a Map Using MAPC

11.1 Introduction . 11-3
11.2 Overview . 11-4
11.3 Modifying a map using MAPC . 11-6
11.4 Step 1: Retrieve the map to be modified 11-7
11.5 Step 2: Add and select map fields . 11-9
11.6 Step 3: Edit the selected fields . 11-12
11.7 Step 4: Optionally display the map layout 11-18
11.8 Step 5: Recompile the map . 11-19
11.9 Updating modified maps in dialogs using ADSC 11-21
11.10 Step 1: Retrieve dialog XXXDADD 11-22
11.11 Step 2: Recompile dialog XXXDADD 11-24
11.12 Step 3: Retrieve and recompile dialog XXXDUPD 11-25
11.13 Executing the application . 11-27
11.14 Optionally loading the modified map 11-28
11.15 Invoking and executing the application 11-29
11.16 Summary . 11-31

Chapter 11. Modifying a Map Using MAPC 11-1

11-2 CA-ADS User Guide

11.1 Introduction

 11.1 Introduction

In the previous chapter, you modified the structure of the Department application
based on preferences at the site. Map layouts can also be modified to satisfy end-user
and site requirements. As a developer, you can modify a map's layout as soon as the
modifications are suggested and approved.

This chapter provides instructions for using MAPC to modify the layout of XXXMAP,
and includes:

■ An overview of modifying maps

■ Steps for modifying sample map XXXMAP

■ Steps for associating the updated map with dialogs that use the map

■ Steps for executing the application

■ A summary of what you've accomplished in this chapter

Chapter 11. Modifying a Map Using MAPC 11-3

11.2 Overview

 11.2 Overview

Maps can be modified easily during development or at any other time in an applica-
tion's life cycle. Modifications can be suggested by development staff and end users.
For example, end users who execute the prototype Department application can request
that the department ID variable field be displayed in bright intensity to make it easier
to locate on the screen.

You can modify a map to make the map conform to screen-display conventions at a
given site. For example, it may be necessary to display the current date on each map,
or to change the location of particular fields on the map.

Changes to XXXMAP: In this chapter, you will make changes to map XXXMAP so
that:

■ The current date is displayed on the map — You will add a variable field to
display the current date at runtime, and an adjacent literal field (DATE) to label
the displayed information.

■ The department ID number is displayed in bright intensity — You will
modify the variable field that displays department ids to make the data display in
bright intensity at runtime.

■ Error messages for fields provide specific information — You will modify
definitions for both the department ID and department head ID variable fields to
define specific error messages for the fields.

■ The NEXT RESPONSE literal and variable fields are displayed at a higher
row on the screen — You will modify the NEXT RESPONSE literal and variable
fields to move them to row 18 (to make map XXXMAP conform to other nonmenu
screens at the site).

The following screen shows the layout of the modified map. To modify map
XXXMAP, you will use the online mapping facility (MAPC), which you used to
define the map in Chapter 8, “Defining a Screen Display Using MAPC” on page 8-1.
After you modify map XXXMAP, you need to update dialogs that use the modified
map. To do this, you will use the CA-ADS dialog compiler (ADSC), which you used
to define dialogs in Chapter 9, “Defining Dialogs Using ADSC” on page 9-1.

11-4 CA-ADS User Guide

11.2 Overview

R S

 FUNCTION: ________

 DATE....: ________
 DEPARTMENT INFORMATION

DEPARTMENT ID: ____
NAME: __

HEAD ID ..: ____

 NEXT RESPONSE: ________

 __

W X

MAPC and ADSC procedures are presented below, followed by a discussion of exe-
cuting the application.

Chapter 11. Modifying a Map Using MAPC 11-5

11.3 Modifying a map using MAPC

11.3 Modifying a map using MAPC

In this procedure, you will use MAPC to modify the layout of map XXXMAP. You
will perform the following steps:

1. Retrieve the map to be modified.

2. Add and select map fields.

3. Edit selected fields.

4. Optionally display the map layout.

5. Recompile the map load module.

These steps are described below. Instructions for associating the modified map defi-
nition with dialogs that use the map are presented in 11.9, “Updating modified maps in
dialogs using ADSC” on page 11-21, later in this chapter.

11-6 CA-ADS User Guide

11.4 Step 1: Retrieve the map to be modified

11.4 Step 1: Retrieve the map to be modified

In order to modify a map, you must first invoke MAPC.

You can invoke MAPC from CA-IDMS/DC or CA-IDMS/UCF (DC/UCF) by speci-
fying the task code for MAPC (for example, MAPCT) in response to the prompt pre-
sented by DC/UCF. For example, when using CA-IDMS/DC, you invoke MAPC as
shown:

ENTER NEXT TASK CODE:

mapct

 [Enter]

For more information on invoking MAPC, see 8.3.1, “Step 1: Invoke MAPC” on
page 8-6.

MAPC begins by displaying the Main Menu screen.

Screen prompts: To retrieve a map, you typically enter information after one or
more of the following Map Definition screen prompts:

■ Map name — You must specify the name (XXXMAP) that you used when you
defined the map in Chapter 8, “Defining a Screen Display Using MAPC” on
page 8-1.

■ Dictionary name — You must specify the same dictionary, if any, as you speci-
fied for your map. The correct dictionary name may already be displayed in this
field.

■ Dictionary node — You must specify the same dictionary node, if any, as you
specified for your map definition in Chapter 13, “Modifying Process Logic in a
Dialog” on page 13-1. The correct dictionary node may already be displayed in
this field.

Use the MAPC Main Menu screen to retrieve map XXXMAP:

Chapter 11. Modifying a Map Using MAPC 11-7

11.4 Step 1: Retrieve the map to be modified

R S
Add Modify Compile Delete Display Switch

 ___.

CA-IDMS/DC Online Map Compiler

Computer Associates International, Inc.

Map name xxxmap
Map version 1
Dictionary name demo
Dictionary node ________

Screen _ 1. General options

2. Map-Level help text definition

3. Associated records

 4. Layout

5. Field definition

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

After you press [Enter], MAPC redisplays the Main Menu screen with a message con-
firming that the map is available for modification.

Note: If the map has not been explicitly released (using the Release option of the
Modify action on the action bar of the Main Menu), naming the map on the
Main Menu screen retrieves that definition for modification. If the map has
been released, you use the MAPC Main Menu screen to check out the map
definition for modification (using the Checkout option of the Modify action on
the action bar of the Main Menu).

For information on checking out a map, see CA-IDMS Mapping Facility.

If the map has been released, subsequently checked out to another developer
and not released by that developer, you will not be able to check it out.

After you successfully check out XXXMAP, you can modify the map layout by adding
and selecting map fields.

11-8 CA-ADS User Guide

11.5 Step 2: Add and select map fields

11.5 Step 2: Add and select map fields

When you defined the layout for XXXMAP in 8.3.5, “Step 5: Modify the map layout”
on page 8-14, you modified the placement of fields on the map by using the Layout
screen. In this chapter, you will use the Layout screen to add new fields to the map
layout and to select existing fields for modification.

From the Main Menu screen, proceed to the Layout screen entering 4 for the Screen
prompt and pressing [Enter]:

R S
Add Modify Compile Delete Display Switch

 ___.

CA-IDMS/DC Online Map Compiler

Computer Associates International, Inc.

Map name XXXMAP

Map version 1

Dictionary name DEMO

Dictionary node ________

Screen 4 1. General options

2. Map-Level help text definition

3. Associated records

 4. Layout

5. Field definition

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Layout screen: The Layout screen for the map is displayed:

Chapter 11. Modifying a Map Using MAPC 11-9

11.5 Step 2: Add and select map fields

R S

 ;FUNCTION: ;________

 ;DEPARTMENT INFORMATION

;DEPARTMENT ID: ;____C

;NAME: ;__C

;HEAD ID ..: ;____C

 ;NEXT RESPONSE: ;________C ;

 __

W X

Note: The example above shows the entire map. On the Layout screen, the bottom
of the map is hidden by the list of available function keys. Use [PF8] to see
the hidden portion of the map.

When you first display the Layout screen for an existing map, each field on the map is
preceded by a start-field character, as shown above. While using the Layout screen,
you can select a field for editing by:

■ Pressing [PF2] while on the field you want to select

or

■ Typing a select-field character (%) in place of the start-field character for the
field.

You use the start-field and select-field characters based on the following guidelines:

■ The start-field character (default is ; or &lbr.) defines the start of a field on the
Layout screen.

Note: On the screens shown in this manual, ; indicates a start-field character.

■ The select-field character (default is %) defines the start of a field and simultane-
ously selects the field for editing.

You use the Layout screen to modify the layout of map XXXMAP and to select fields
on the map for further editing:

Modifying the map layout: Make the indicated specifications:

■ Begin the new DATE literal field with a start-field character (shown here as ;)

■ Begin the DATE variable field with a select-field character (shown here as ;)

11-10 CA-ADS User Guide

11.5 Step 2: Add and select map fields

■ Type a select-field character (or press [PF2]) over the start-field character for vari-
able fields to select them for editing (DEPARTMENT ID variable field and
HEAD ID variable field).

■ Select the NEXT RESPONSE literal and variable fields for editing by using the
select-field character or [PF2].

R S

 ;FUNCTION: ;________

 ;date....: ;
 ;DEPARTMENT INFORMATION

;DEPARTMENT ID: %____C
;NAME: ;__C

;HEAD ID ..: %____C

 %NEXT RESPONSE: %________C

 ;

 __

W X

After you press [Enter], MAPC redisplays the Layout screen so that you can inspect
the screen. You can correct any errors on the Layout screen in either of the following
ways:

■ To change a few fields, type over the characters that you want to change and
press [Enter] again.

■ To erase the modifications that you just made, press the CLEAR key.

In this chapter, pressing CLEAR on the Layout screen does not erase fields that
you defined when you originally generated the map in Chapter 8, “Defining a
Screen Display Using MAPC” on page 8-1.

Chapter 11. Modifying a Map Using MAPC 11-11

11.6 Step 3: Edit the selected fields

11.6 Step 3: Edit the selected fields

To edit new and existing fields in this chapter, you will use the Field and Literal Defi-
nition screens to make specifications for fields, such as the display intensity of the
runtime field, define error messages for the department ID and department head ID
variable field, and so forth.

You selected fields for editing by using the Layout screen earlier in this chapter, in
11.5, “Step 2: Add and select map fields” on page 11-9. The following table summa-
rizes the specifications that you will make when editing each selected field. You will
edit each selected field's definition as indicated in this table.

For more information on using prompts to edit field definitions, see 8.3.5, “Step 5:
Modify the map layout” on page 8-14.

Location of field on
map

Purpose of field Specifications for field

After DATE literal field
(in the upper right
corner)

Displays the current
date

Element name: AGR-DATEY

Protected

Edit Picture XX/XX/XX

After DEPARTMENT
ID literal field

Displays a depart-
ment's unique ID
number

Bright display

Error message:

CENTER A NUMERIC

DEPT IDC

After HEAD ID literal
field

Displays the ID
number for the head
of the department

Error message:

CENTER A NUMERIC

DEPT IDC

Literal NEXT
RESPONSE in lower
left corner

Prompts the user to
input a response
name

ROW : 18

After NEXT
RESPONSE literal field

Allows a user to
input a response
name

ROW : 18

Y AGR-DATE is an element in ADSO-APPLICATION-GLOBAL-RECORD

Press [PF5] from the Layout screen to begin editing fields. This brings you to the first
definition screen, a Field Definition screen for the DATE variable field.

Editing the DATE variable field: On the Field Definition screen, you edit the
DATE variable field information as shown:

■ The field being edited is highlighted on the screen.

■ Name the record element (in this example, AGR-DATE) to be associated with the
variable field.

11-12 CA-ADS User Guide

11.6 Step 3: Edit the selected fields

■ Specify an edit picture of xx/xx/xx.

R S
 Field Definition Page 1 of 7

 Map name: XXXMAP Version: 1

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

DATE.....: _

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 Field at row 2 column 16 Drop field (/) _

Element name: agr-date
 Subscript

 In record Version

 Edit Picture xx/xx/xx

 Display intensity 1 1. Normal 2. Bright 3. Hidden

At end of field 1 1. Auto-tab 2. Lock keyboard 3. Take no action

Unprotected (/) / Required (/). _

Automatically edited (/) / Skipped by tab key (/) _

 DC366??4 Specify the variable field and any attributes

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

W X

When you press [Enter], the Field Definition screen is redisplayed with a confirming
message.

R S
 Field Definition Page 1 of 7

 Map name: XXXMAP Version:

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 FUNCTION: ________

 DATE....: ________

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 Field at row 2 column 16 Drop field (/) _

Element name: AGR-DATE Subscript

 In record ADSO-APPLICATION-GLOBAL-RECORD Version 1

 Edit Picture XX/XX/XX

 Display intensity 1 1. Normal 2. Bright 3. Hidden

At end of field 1 1. Auto-tab 2. Lock keyboard 3. Take no action

Unprotected (/) / Required (/). _

Automatically edited (/) / Skipped by tab key (/) _

DC366??1 Map options processed successfully

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

W X

This message informs you that the new field definition contains no errors and has been
successfully added to the map. Underscores displayed for the field show you the
length of the variable field.

Chapter 11. Modifying a Map Using MAPC 11-13

11.6 Step 3: Edit the selected fields

Editing the DEPARTMENT ID variable field: The next map field selected for
editing is the DEPARTMENT ID variable field. To edit this field, you will:

1. Make data in the field display in bright intensity.

2. Define an error message for the field. To do this, you will use page 3 - Addi-
tional Edit Criteria - of the Field Definition screen.

Pressing [PF5] brings the Field Definition screen highlighting the variable field for the
department ID.

R S
 Field Definition Page 1 of 7

 Map name: XXXMAP Version: 1

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

DEPARTMENT ID: _____

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 Field at row 2 column 16 Drop field (/) _

Element name: DEPT-ID-?41? Subscript

 In record DEPARTMENT Version 1??

 Edit Picture 9(4)

 Display intensity 2 1. Normal 2. Bright 3. Hidden

At end of field 1 1. Auto-tab 2. Lock keyboard 3. Take no action

Unprotected (/) / Required (/). _

Automatically edited (/) / Skipped by tab key (/) _

 DC366??4 Specify the variable field and any attributes

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

W X

When you press [Enter] to input your modification, the Field Definition screen dis-
plays a confirming message.

This message informs you that an existing field definition contains no errors and has
been successfully modified in the map.

Defining an error message: To define a message for this field, press [PF8] twice
(or change the page number in the upper right corner) to get to page 3 - Additional
Edit Criteria - of the Field Definition screen.

Sample Additional Edit Criteria screen

11-14 CA-ADS User Guide

11.6 Step 3: Edit the selected fields

R S
Additional Edit Criteria Page 3 of 7

 Map name: XXXMAP Version: 1

 Element name DEPT-ID-?41? Subscript

 In record DEPARTMENT Version 1

Edit table name . . . ________ Version ____ Link with map (/) _

Edit type _ 1.Valid values 2.Invalid values

Code table name . . . ________ Version ____ Link with map (/) _

Error message (specify ID or text)

ID. Prefix __ Number ______

Text. __

 __

 DC3658?4 Specify edit options

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

W X

 Screen prompts

Error message — Enter the text for the message that will display for the field
when an error is encountered.

Add the error message associated with the DEPARTMENT ID variable field as shown:

R S
Additional Edit Criteria Page 3 of 7

 Map name: XXXMAP Version: 1

 Element name DEPT-ID-?41? Subscript

 In record DEPARTMENT Version 1

Edit table name . . . ________ Version ____ Link with map (/) _

Edit type _ 1.Valid values 2.Invalid values

Code table name . . . ________ Version ____ Link with map (/) _

Error message (specify ID or text)

ID. Prefix __ Number ______

Text. =enter a numeric dept id=_______________
 __

 DC3658?4 Specify edit options

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

W X

A confirming message is displayed when your specifications on the Additional Edit
Criteria screen contain no errors and have modified the field definition.

Chapter 11. Modifying a Map Using MAPC 11-15

11.6 Step 3: Edit the selected fields

Press [PF5] to have the Field Definition screen for the next select field displayed.

Editing the HEAD ID variable field: The next field selected for editing is the
HEAD ID variable field. You need to define an error message for this field by using
the Additional Edit Criteria screen.

R S
Additional Edit Criteria Page 3 of 7

 Map name: XXXMAP Version: 1

 Element name DEPT-ID-?41? Subscript

 In record DEPARTMENT Version 1

Edit table name . . . ________ Version ____ Link with map (/) _

Edit type _ 1.Valid values 2.Invalid values

Code table name . . . ________ Version ____ Link with map (/) _

Error message (specify ID or text)

ID. Prefix __ Number ______

Text. =dept head ids are numeric=_____________
 __

 DC3658?4 Specify edit options

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

W X

When you have successfully defined an error message for the DEPT-HEAD-ID vari-
able field, you can edit the next selected field. To display the next selected field,
press [PF5]. MAPC displays the Literal Definition screen for the NEXT RESPONSE
literal field.

Displaying and moving the NEXT RESPONSE literal field: To move the
NEXT RESPONSE literal field, change the row number to reflect the new position.
(Remember that you could have used the Layout screen with the alternate PF keys to
move both this literal field and its variable field.)

R S
 Literal Definition Page 1 of 2

 Map name: XXXMAP Version:

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 NEXT RESPONSE: ________

 _

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 Field at row 18 column 3 Drop field (/) _

W X

After you press [Enter], the NEXT RESPONSE literal field is displayed in its new
location.

11-16 CA-ADS User Guide

11.6 Step 3: Edit the selected fields

Displaying and moving the NEXT RESPONSE variable field: Press [PF5] to
see the next field to be defined. The next field is the NEXT RESPONSE variable
field. Move this field to row 18.

R S
 Field Definition Page 1 of 7

 Map name: XXXMAP Version:

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 NEXT RESPONSE: ________
 _

 ...5...1?...15...2?...25...3?...35...4?...45...5?...55...6?...65...7?...75...8?

 Field at row 18 column 19 Drop field (/) _

Element name: AGR-CURRENT-RESPONSE Length 8

 Display intensity 2 1. Normal 2. Bright 3. Hidden

At end of field 3 1. Auto-tab 2. Lock keyboard 3. Take no action

Unprotected (/) / Required (/). _

Automatically edited (/) _ Skipped by tab key (/)

 DC366??1 Map options processed successfully

 F1=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

W X

After you press [Enter], the Field Definition screen for the response variable field is
redisplayed with a confirming message.

You have edited all of the fields you selected for editing when you used the Layout
screen earlier in this chapter, in 11.5, “Step 2: Add and select map fields” on
page 11-9.

Pressing [PF5] brings you to Main Menu screen.

Before you recompile the map, you can display the current layout for map XXXMAP.

Chapter 11. Modifying a Map Using MAPC 11-17

11.7 Step 4: Optionally display the map layout

11.7 Step 4: Optionally display the map layout

You can use the Map Image screen in MAPC to see how the modified map will look
to a user. This allows you to see how modifications affect a map layout before you
recompile the map load module.

You can display the Map Image screen by selecting Image option from the Display
activity on the action bar:

R S
Add Modify Compile Delete Display Switch

 .___.

 3 1. Browse

CA-ID 2. Summary piler

 3. Image
Computer ________________ onal, Inc.

 F3= Exit

Map name XXXMAP

Map version 1

Dictionary name DEMO

Dictionary node ________

Screen 5 1. General options

2. Map-Level help text definition

3. Associated records

 4. Layout

5. Field definition

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

If you note any errors while displaying the Map Image screen, you can quickly correct
the map while still using MAPC. You can then redisplay the Map Image screen to
check your corrections.

When you are satisfied with the modified map layout as displayed on the Map Image
screen, you can recompile the map.

Press [PF3] from the Map Image screen to return to the Main Menu.

11-18 CA-ADS User Guide

11.8 Step 5: Recompile the map

11.8 Step 5: Recompile the map

By using MAPC screens, you modified map XXXMAP by adding new map fields and
changing existing fields. You now need to create an updated load module for the map.
You compile the XXXMAP map as shown:

Compiling the map

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile Map Compiler

2. View messages

 ----------------------- International, Inc.

 F3=Exit

Map name XXXMAP

Map version 1

Dictionary name DEMO

Dictionary node ________

Screen _ 1. General options

2. Map-Level help text definition

3. Associated records

 4. Layout

5. Field definition

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

To compile the application, position the cursor on the Compile item on the action bar
and press [Enter]. You can position the cursor on Compile by:

■ Tabbing to Compile and pressing [Enter]

■ Pressing [PF10] to move to the action bar and then tabbing to Compile and
pressing [Enter]

■ Typing compile on the command line and pressing [Enter]

Once you have displayed the Compile action item, press [Enter] to compile the map.

When you press [Enter] to recompile the map, MAPC displays messages to indicate
whether the map load module recompiled successfully.

■ If the map recompiled successfully, MAPC a confirming message.

■ If the map could not be recompiled, MAPC displays an error message. In this
case, read the message to determine the problem. After correcting the errors, try
again to recompile the map.

Chapter 11. Modifying a Map Using MAPC 11-19

11.8 Step 5: Recompile the map

Exit from MAPC: After you successfully compile your map, you can exit from
MAPC by using the Switch activity on the Main Menu screen. In this example, you
use Switch to transfer directly to ADSC to associate modified map XXXMAP with
dialogs that use the map:

Selecting the Switch activity

R S
Add Modify Compile Delete Display Switch

 .___.

CA-IDMS/DC Online Task code adsct___

Computer Associates Int F3=Exit

Map name XXXMAP

Map version 1

Dictionary name DEMO

Dictionary node ________

Screen _ 1. General options

2. Map-Level help text definition

3. Associated records

 4. Layout

5. Field definition

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

In this example, ADSCT is the sample task code for ADSC.

Note: You cannot use the switch action unless you entered MAPC using the transfer
control facility task code (MAPCT).

11-20 CA-ADS User Guide

11.9 Updating modified maps in dialogs using ADSC

11.9 Updating modified maps in dialogs using ADSC

After you modify map XXXMAP, you use ADSC to associate the modified map with
dialogs XXXDADD and XXXDUPD. To do this, you will perform the following steps:

1. Retrieve dialog XXXDADD.

2. Recompile the dialog load module.

3. Retrieve and recompile dialog XXXDUPD.

Chapter 11. Modifying a Map Using MAPC 11-21

11.10 Step 1: Retrieve dialog XXXDADD

11.10 Step 1: Retrieve dialog XXXDADD

In order to retrieve a dialog load module, you use ADSC.

If you did not transfer directly to ADSC earlier in this chapter when you exited from
MAPC, you need to invoke ADSC by using the task code (for example, ADSCT) for
ADSC.

Note: Using the task code ADSCT means that you are invoking ADSC under TCF
(the transfer control facility). Once you are in the ADSC tool under TCF, you
can switch to another application development tool without returning to
DC/UCF.

For more information on invoking ADSC, see 9.3.1, “Step 1: Invoke ADSC” on
page 9-8.

ADSC begins by displaying the Main Menu screen. You use the Main Menu screen
to retrieve a dialog definition for update.

Screen prompts: You typically enter information after one or more of the fol-
lowing Main Menu screen prompts:

■ Dialog name — You must specify the name (XXXDADD) that you used when
you defined the dialog in 9.3.2, “Step 2: Define dialog XXXDADD” on
page 9-9.

■ Dictionary name — You must specify the same dictionary, if any, as you speci-
fied for your dialog in Chapter 9, “Defining Dialogs Using ADSC” on page 9-1.
The correct dictionary name may already be displayed in this field.

■ Dictionary node — You must specify the same dictionary node, if any, as you
specified for your dialog. The correct dictionary node may already be displayed
in this field.

11-22 CA-ADS User Guide

11.10 Step 1: Retrieve dialog XXXDADD

R S
Add Modify Compile Delete Display Switch

 .___.

CA-IDMS/DC Online Dialog Compiler

Computer Associates International, Inc.

Dialog name xxxdadd
Dialog version 1
Dictionary name demo
Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Press [Enter] to retrieve the dialog.

Note: If the dialog has not been explicitly released (using the Release option of the
Modify action on the action bar of the Main Menu), naming the dialog on the
Main Menu screen retrieves that definition for modification. If the dialog has
been released, you use the ADSC Main Menu screen to check out the dialog
definition for modification (using the Checkout option of the Modify action on
the action bar of the Main Menu).

For information on checking out a dialog, see CA-ADS Reference.

If the dialog has been released, subsequently checked out to another developer
and not released by that developer, you will not be able to check it out.

After you press [Enter], ADSC redisplays the Main Menu screen with either a con-
firming message or an error message.

Make sure that you typed the correct dialog name, dictionary, and node, as necessary.
You can type over any errors and then press [Enter] again.

After you successfully retrieve XXXDADD, you can recompile the dialog load module
as described below.

Chapter 11. Modifying a Map Using MAPC 11-23

11.11 Step 2: Recompile dialog XXXDADD

11.11 Step 2: Recompile dialog XXXDADD

To include modified map XXXMAP in dialog XXXDADD, you need only recompile
the dialog:

Compiling the dialog: You compile the XXXDADD dialog as shown:

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile log Compiler

2. Display messages

------------------------- nternational, Inc.

 F3=Exit

Dialog name XXXDADD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

To compile the application, position the cursor on the Compile item on the action bar
and press [Enter]. You can position the cursor on Compile by:

■ Tabbing to Compile and pressing [Enter]

■ Pressing [PF10] to move to the action bar and then tabbing to Compile and
pressing [Enter]

■ Typing compile on the command line and pressing [Enter]

Once you have displayed the Compile action item, press [Enter] to compile the dialog.

When you press [Enter], ADSC attempts to recompile the dialog load module using
the new map. ADSC displays a message to indicate whether the dialog has been suc-
cessfully recompiled or whether errors are present. In the case of errors, read the
message to determine the problem. Use ADSC to correct any errors, and then recom-
pile the dialog as described above.

After you successfully recompile dialog XXXDADD, you can retrieve and recompile
dialog XXXDUPD as described below.

11-24 CA-ADS User Guide

11.12 Step 3: Retrieve and recompile dialog XXXDUPD

11.12 Step 3: Retrieve and recompile dialog XXXDUPD

You display dialog XXXDUPD by overtyping the Dialog name on the Main Menu
screen and retrieving it.

R S
Add Modify Compile Delete Display Switch

 .___.

CA-IDMS/DC Online Dialog Compiler

Computer Associates International, Inc.

Dialog name xxxupdd
Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

When you have successfully retrieving the dialog, you can immediately recompile the
dialog load module.

Compiling the dialog: You compile the XXXDADD dialog as shown:

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile log Compiler

2. Display messages

------------------------- nternational, Inc.

 F3=Exit

Dialog name XXXDUPD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Chapter 11. Modifying a Map Using MAPC 11-25

11.12 Step 3: Retrieve and recompile dialog XXXDUPD

After you successfully recompile dialog XXXDUPD, you can exit from ADSC and
return to DC/UCF to execute the application. You press [PF3] from the ADSC Main
Menu to exit from ADSC.

11-26 CA-ADS User Guide

11.13 Executing the application

11.13 Executing the application

At some sites, modified maps are not automatically loaded in the program pool when
an old copy of the map already is in the pool.

Note: The new copy of a map load module is loaded automatically in the program
pool at your site if the system generation program specifies that NEW COPY
IS YES for OLM The default is NEW COPY IS NO.

This strategy allows users who are executing the old copy of the map to complete their
work. When no users are executing the map, developers can make the modified map
available for execution. As an application developer, you do this by updating the map
in dialogs that use the map and then dynamically loading the modified map in the
program pool.

You included modified map XXXMAP in dialogs XXXDADD and XXXDUPD above, in
11.9, “Updating modified maps in dialogs using ADSC” on page 11-21. If modified
maps are not automatically loaded in the program pool at your site, you now need to
dynamically load modified map XXXMAP in the program pool.

Dynamically loading a modified map in the program pool is discussed below, followed
by steps for invoking and executing the application.

Chapter 11. Modifying a Map Using MAPC 11-27

11.14 Optionally loading the modified map

11.14 Optionally loading the modified map

You can manually load modified maps in the program pool by issuing a DCMT
VARY PROGRAM NEW COPY command. If you are not sure whether modified
maps are automatically loaded at your site, go ahead and issue this DCMT command
for your modified map.

Note: Do not confuse these commands:

■ DCMT VARY PROGRAM loads a modified map.

■ DCMT VARY DYNAMIC PROGRAM dynamically redefines characteristics of
programs and maps and can interfere with your ability to execute the map.

You enter the DCMT VARY PROGRAM command in response to the DC/UCF
prompt displayed at your site. The following example shows how to enter this
command while using CA-IDMS/DC:

ENTER NEXT TASK CODE:

dcmt vary program demo..xxxmap new copy.

 [Enter]

If the DCMT command is successful, DC/UCF displays a confirming message.

If a different message is displayed, verify that you specified the correct map in the
DCMT command. You can type the DCMT command again using the correct map
name.

Note:

If there are multiple components with the same name, you will be presented
with a list of the components and asked to identify the one to be varied.

If you did type the correct map name, you can proceed to execute the Department
application. In this case, the program pool doesn't contain a copy of the old map, so a
new copy will be loaded automatically the next time a dialog displays the map.

11-28 CA-ADS User Guide

11.15 Invoking and executing the application

11.15 Invoking and executing the application

To invoke the Department application from DC/UCF, you enter the task code
(XXXDEPT) for the application. For example, when using CA-IDMS/DC, you invoke
the Department application as shown:

ENTER NEXT TASK CODE:

xxxdept

 [Enter]

For more information on invoking the Department application, see 9.4, “Instructions
for executing the application” on page 9-17.

To test modifications you made to map XXXMAP, you need to execute either dialog
XXXDADD or XXXDUPD. According to your application design, each of the fol-
lowing responses selects a function that executes either dialog XXXDADD or
XXXDUPD:

■ ADD selects dialog function ADDDEP. In the final application, ADDDEP will
allow end users to add new department information. ADDDEP executes dialog
XXXDADD.

■ MOD selects dialog function MODDEP, which will allow end users to modify
existing department information. MODDEP executes dialog XXXDUPD.

■ DEL selects dialog function DELDEP, which will allow end users to delete
existing department information. DELDEP executes dialog XXXDUPD.

Testing error messages: To quickly test out error messages that you defined for
map XXXMAP, you can invoke function ADDDEP. The modified map, XXXMAP, is
displayed for the function ADDDEP.

Try entering invalid department and department head ID numbers as shown:

R S

 FUNCTION: ADDDEP

 DATE....: 1?/29/99

 DEPARTMENT INFORMATION

 DEPARTMENT ID: aaaa
NAME: bbbbbbbbb
HEAD ID ..: cccc

 NEXT RESPONSE:

W X

Chapter 11. Modifying a Map Using MAPC 11-29

11.15 Invoking and executing the application

When you press [Enter], your error messages are displayed in the map's message field.
For example:

C ENTER A NUMERIC DEPT ID C C DEPT HEAD IDS ARE NUMERIC C

Verify the modified map: You can verify that functions MODDEP and DELDEP
also display modified map XXXMAP by displaying these functions. Try transferring
from ADDDEP to MODDEP:

R S

 FUNCTION: ADDDEP

 DATE....: 1?/29/99

 DEPARTMENT INFORMATION

 DEPARTMENT ID: ????

 NAME:

HEAD ID ..: ????

 NEXT RESPONSE: mod

W X

The MODDEP function is displayed. MODDEP also displays modified map,
XXXMAP.

R S

 FUNCTION: MODDEP

 DATE....: 1?/29/99

 DEPARTMENT INFORMATION

 DEPARTMENT ID: ????

 NAME:

HEAD ID ..: ????

 NEXT RESPONSE: mod

W X

You also can transfer to function DELDEP if you want.

Exit from the application: To exit from the Department application, you can use
the EXIT response anywhere in the application.

11-30 CA-ADS User Guide

11.16 Summary

 11.16 Summary

You can use MAPC to modify maps during development or at any other time in an
application's life cycle. For example, you can modify a map:

■ To display information that becomes available as the application is expanded. For
example, the name of each department head can be displayed on map XXXMAP
when the Department application includes employee data.

■ To collect additional information. For example, new government or tax regu-
lations can require the collection of new data.

■ To display fields in conformity with end-user requests and site conventions. For
example, you modified map XXXMAP in this chapter for these reasons.

In this chapter, you used MAPC to modify the layout of map XXXMAP as described
below:

1. You added two new map fields on the Layout screen. You added the DATE
literal field and an adjacent variable field.

2. You selected fields for editing on the Layout screen. You used the select-field
character (default is %) to select the new variable field and four existing map
fields for editing.

3. You edited the five selected fields on the Field Definition and Literal Defi-
nition screens. You associated the new variable field with AGR-DATE to display
the current calendar date in the runtime field.

You modified the variable field for department ids so that ids display in bright
intensity at runtime. You modified the department ID field and the department
head id field to define specific error messages for these fields. You then moved
the RESPONSE literal field and the adjacent variable field to a different location
on the map.

When you recompiled map XXXMAP, MAPC informed you of a critical change on the
map. When you make a critical change to a map, you must recompile dialogs that use
the map.

In this chapter, you used ADSC to recompile dialogs XXXDADD and XXXDUPD,
which both use map XXXMAP. After you exited from ADSC, you optionally issued a
DCMT VARY PROGRAM NEW COPY command for map XXXMAP to load the new
map load module in the program pool for execution.

No process statements: You then executed the prototype application. Notice
that you do not need to write any process statements to develop a working prototype
for an application. This is true regardless of the application's size. An application's
user interface can be defined, tested, and tailored for your users before you have any
process logic to modify.

End users and application development staff can execute the prototype and implement
changes until the prototype is approved. You can then use CA-ADS development

Chapter 11. Modifying a Map Using MAPC 11-31

11.16 Summary

tools to enhance the application so that it can be used to store, display, modify, and
delete data in the application database.

As the application developer, you will enhance the Department application by writing
process code and creating work records for dialogs, as described in Part III of this
manual.

11-32 CA-ADS User Guide

Chapter 12. Adding Process Logic to a Dialog

12.1 Introduction . 12-3
12.2 Overview . 12-4
12.3 Defining process modules using IDD . 12-9

12.3.1 Step 1: Invoke the IDD menu facility 12-10
12.3.2 Step 2: Define process module XXXDADD-PREMAP 12-11
12.3.3 Step 3: Define process module XXXDADD-RESPONSE 12-16
12.3.4 Step 4: Exit from IDD . 12-20

12.4 Adding process modules to dialogs using ADSC 12-21
12.4.1 Step 1: Retrieve dialog XXXDADD 12-21
12.4.2 Step 2: Specify dialog options . 12-23
12.4.3 Step 3: Add a subschema . 12-24
12.4.4 Step 4: Add process modules . 12-28
12.4.5 Step 5: Recompile the dialog . 12-32
12.4.6 Correct errors in process modules 12-34

12.4.6.1 Display structural messages . 12-34
12.4.6.2 Display diagnostic messages . 12-35
12.4.6.3 Correct structural errors . 12-38
12.4.6.4 Correct syntax errors . 12-40
12.4.6.5 Update dialogs that use the process module 12-40

12.5 Executing the application . 12-42
12.6 Summary . 12-48

Chapter 12. Adding Process Logic to a Dialog 12-1

12-2 CA-ADS User Guide

12.1 Introduction

 12.1 Introduction

You defined a prototype Department application in Part II of this manual. You exe-
cuted this prototype to test out the flow of control between application functions at
runtime. Executing the prototype enabled you to see how screens are displayed to
users.

Because you have not yet written any process commands to access the database, the
prototype Department application does not retrieve or store data in the database. For
example, sample department data that you type on the screen while viewing the
ADDDEP function does not get stored in the database when you press [Enter].

In CA-ADS, components of a prototype application can be developed directly into the
production application. In Part III of this manual, you will complete the Department
application so that it is fully functional. To do this, you will add modules of process
commands to dialogs XXXDADD and XXXDUPD, which you defined in Part II. The
process modules that you define for these dialogs will allow users to store, display,
modify, and delete department records in the database.

In this chapter, you will define the two process modules required for dialog
XXXDADD. This chapter includes:

■ An overview of defining process modules for dialogs

■ Steps for defining process modules

■ Steps for adding process modules to dialogs

■ Steps for executing the application

■ A summary of what you've accomplished in this chapter

Chapter 12. Adding Process Logic to a Dialog 12-3

12.2 Overview

 12.2 Overview

Because CA-ADS is a fourth-generation application development system, major
portions of an CA-ADS application can be defined without writing any code. For
example, you defined the entire Department application prototype in Part II of this
manual without writing any code.

To enable dialogs to perform runtime processing, you define modules of process com-
mands for the dialogs. For example, you can define process modules to retrieve and
display database information, to display messages, to receive input from users, and to
evaluate and store valid data.

Process language: You write process modules by using the CA-ADS process lan-
guage. This language incorporates all the processing capabilities found in a traditional
programming language. For example, you can evaluate strings, perform arithmetic
functions, and perform conditional tests and loops. Additionally, the CA-ADS process
language benefits from complete integration with the CA-ADS environment.

Categories of process commands: The following table lists categories of
process commands. For detailed information on process commands, see the CA-ADS
Reference.

Process modules: Process modules can be executed before and after the dialog's
map is displayed to the user.

Category of command Capabilities

Arithmetic and assignment Perform calculations and move data

Conditional Perform testing and looping

Control Specify the next application component executed,
govern data passed to that component, and
display maps

Database Perform database retrieval and update functions
and specify recovery options

Map modification Request temporary or permanent changes to a
map at runtime

Pageable map Create, display, and retrieve sets of fields (detail
occurrences) for a pageable map

Queue and scratch management Define and access temporary disk storage

Subroutine control Define and call subroutines

Utility Retrieve runtime system status information,
request memory dumps, initialize record buffers,
direct output to a printer, and display diagnostic
information

12-4 CA-ADS User Guide

12.2 Overview

Premap process: The process module is called a premap process when executed
before the map. A dialog can have a maximum of one premap process.

A premap process typically includes commands that prepare the map for display. For
example, commands in a premap process can retrieve stored values from the database
and then display the values along with a message on the dialog's map.

Response process: The process module is called a response process when exe-
cuted after the map. A dialog can have any number of response processes. The
response process executed at runtime is determined by actions that the user takes when
inputting data on the map.

A response process typically includes commands that accept end-user input for evalu-
ation and storage.

Declaration module: A dialog can have a maximum of one declaration module.
The modules is not executed, but contains declaration statements for SQL that are used
during dialog compilation.

>> For information on declaration statements, see CA-IDMS SQL Programming.

Accessing the database: Some process modules access the database; for example,
to store a new department record.

Process modules accessing a non-SQL defined database can use SQL DML statements
or non-SQL DML statements to access that data. Process modules accessing an
SQL-defined database can use SQL DML statements.

A dialog using non-SQL DML statements to access a non-SQL defined database must
know which portion of the database to access at runtime. You supply this information
by adding a predefined subset of the database (that is, a subschema) with the dialog.
The subschema that you name for dialog XXXDADD, for example, identifies the
portion of the sample database that contains the DEPARTMENT record. Subschemas
usually are defined by database administrators (DBAs) at a site.

A dialog that uses SQL statements to access an SQL-defined (or non-SQL defined)
database will access tables that have been defined through SQL statements. To
execute the SQL statements, an access module must be created based on the SQL
statements in one or more programs. The access module is created after dialog com-
pilation; it does not have to be predefined.

>> For further information on programming using SQL DML statements, see
CA-IDMS SQL Programming and CA-IDMS SQL Reference. For further information
on programming using non-SQL DML statements, see CA-ADS Reference and
CA-IDMS Navigational DML Programming.

Chapter 12. Adding Process Logic to a Dialog 12-5

12.2 Overview

Work records: You also can have work records associated with a map or associ-
ated directly with a dialog. A work record does not participate in a subschema. Data
defined by work records is not stored in the database. You will not add a work record
to dialog XXXDADD.

The following figure shows the components of a fully developed dialog:

■ A premap process is executed before the dialog's map is displayed to the user.

■ A response process is executed when the user inputs data on the map.

■ A subschema specifies the subset of the application database (schema) that is
available to the dialog.

■ Work records define data that is used at runtime but not stored in the database.

Integrated Data Dictionary: As an application developer, you define premap and
response processes by using the Integrated Data Dictionary (IDD) menu facility.

You will use IDD in this chapter to define one premap process (XXXDADD-PREMAP)
and one response process (XXXDADD-RESPONSE) for dialog XXXDADD:

Dialog compiler: When you finish using IDD to define process modules, you use
the CA-ADS dialog compiler (ADSC) to associate the process modules with dialogs.
For example, after you use IDD to define process modules XXXDADD-PREMAP and
XXXDADD-RESPONSE, you use ADSC to associate these process modules with
dialog XXXDADD.

Enhancing sample application dialogs: In this chapter, you will enhance dialog
XXXDADD by adding a premap process, response process, and subschema to the
dialog, as shown below. Process modules XXXDADD-PREMAP and
XXXDADD-RESPONSE perform all processing required for dialog XXXDADD.
Subschema EMPSS01 specifies the portion of the database available to process
XXXDADD-RESPONSE, which stores department data in the database.

Steps for defining process modules and associating the modules and a subschema with
a dialog are discussed below.

Process name Type Function

XXXDADD-PREMAP Premap Displays the dialog's map with a
message

XXXDADD-RESPONSE Response Accepts department information sup-
plied by the end user on the map;
stores new department information in
the database; redisplays the stored
input to the user with a confirming
message

12-6 CA-ADS User Guide

12.3 Defining process modules using IDD

Chapter 12. Adding Process Logic to a Dialog 12-7

12.3 Defining process modules using IDD

12-8 CA-ADS User Guide

12.3 Defining process modules using IDD

12.3 Defining process modules using IDD

You define process modules in the data dictionary. You can associate a given process
module with any number of dialogs. You use the IDD menu facility to define process
modules in the data dictionary. A typical IDD menu facility screen is shown below.

R S

-

COMPUTER ASSOCIATES INTERNATIONAL CAGJF?

- IDD REL 15.? CCC MASTER SELECTION CCC TOP

 ->

-

DICTIONARY NAME...: DEMO NODE NAME..:

 USER NAME.........:

 PASSWORD..........:

USAGE MODE........: X UPDATE _ RETRIEVAL

PFKEY SIMULATION..: X OFF _ ON

-

-

 _ ATTR = ATTRIBUTE <PF2> _ PROC = PROCESS <PF3>

 _ CLAS = CLASS <PF4> _ PROG = PROGRAM <PF5>

 _ ELEM = ELEMENT <PF6> _ RECD = RECORD <PF7>

 _ FILE = FILE <PF8> _ TABL = TABLE <PF9>

 _ MODU = MODULE <PF1?> _ USER = USER <PF11>

 _ ENTL = USER DEFINED ENTITY LIST _ SYST = SYSTEM

 _ MSGS = MESSAGE

 _ QFIL = QFILE _ OPTI = OPTIONS

 - _ DISP = DISPLAY ALL _ HELP = HELP <PF1>

W X

■ Heading and system message area — Names the IDD screen and returns mes-
sages to you.

■ Command area — Allows you to enter commands and IDD screen names.

■ Specification area — Prompts you for specifications.

■ Activity selection area — Allows you to select the next IDD activity from a list
of available activities.

If you need any more information on IDD while using the IDD menu facility, see B.6,
“Using the IDD Menu Facility” on page B-31.

Steps: To define process modules XXXDADD-PREMAP and
XXXDADD-RESPONSE, you will perform the following steps:

1. Invoke the IDD menu facility.

2. Define process module XXXDADD-PREMAP.

3. Define process module XXXDADD-RESPONSE.

4. Exit from the IDD menu facility.

Chapter 12. Adding Process Logic to a Dialog 12-9

12.3 Defining process modules using IDD

These steps are described below. Steps for adding these modules to dialog XXXDADD
are presented later in this chapter.

12.3.1 Step 1: Invoke the IDD menu facility

You can invoke IDD from DC/UCF by entering the task code for the IDD menu
facility (for example, IDDMT) in response to the prompt presented by DC/UCF. For
example, you can invoke IDD from CA-IDMS/DC as shown:

ENTER NEXT TASK CODE:

iddmt
 [Enter]

For more information on task codes for CA-ADS development tools, see 6.3, “Appli-
cation development tools” on page 6-7.

Master Selection screen: IDD begins by displaying the Master Selection screen:

R S
COMPUTER ASSOCIATES INTERNATIONAL CAGJF?

IDD REL 15.? CCC MASTER SELECTION CCC TOP

 ->

DICTIONARY NAME...: DEMO NODE NAME..:

 USER NAME.........:

 PASSWORD..........:

USAGE MODE........: X UPDATE _ RETRIEVAL

PFKEY SIMULATION..: X OFF _ ON

 _ ATTR = ATTRIBUTE <PF2> _ PROC = PROCESS <PF3>

 _ CLAS = CLASS <PF4> _ PROG = PROGRAM <PF5>

 _ ELEM = ELEMENT <PF6> _ RECD = RECORD <PF7>

 _ FILE = FILE <PF8> _ TABL = TABLE <PF9>

 _ MODU = MODULE <PF1?> _ USER = USER <PF11>

 _ ENTL = USER DEFINED ENTITY LIST _ SYST = SYSTEM

 _ MSGS = MESSAGE

 _ QFIL = QFILE _ OPTI = OPTIONS

 _ DISP = DISPLAY ALL _ HELP = HELP <PF1>

W X

Screen prompts: When you start an IDD menu facility session, you may need to
sign on to IDD. To do so, supply information after one or more of the following
Master Selection screen prompts, as appropriate:

■ DICTIONARY NAME — You must specify the same dictionary, if any, as you
specified for all other Department application components. The correct dictionary
name may already be displayed in this field.

■ NODE NAME — You must specify the same dictionary node, if any, as you
specified for all other Department application components. The correct dictionary
node may already be displayed in this field.

12-10 CA-ADS User Guide

12.3 Defining process modules using IDD

■ USER NAME — You may need to supply your user ID after this prompt. You
can check with others at your site to see if you are required to sign on to the IDD
menu facility. If you have a user ID, you can go ahead and enter it, just in case.

■ PASSWORD — If you need to supply signon information for IDD, you also may
need to enter your password after this prompt. Your password is not displayed on
the screen when you type it. If you have a password, you can go ahead and enter
it.

Signing on: You can sign on to the IDD menu facility as shown:

R S
COMPUTER ASSOCIATES INTERNATIONAL CAGJF?

IDD REL 15.? CCC MASTER SELECTION CCC TOP

 ->

DICTIONARY NAME...: DEMO NODE NAME..:

 USER NAME.........: xxxx
 PASSWORD..........:

USAGE MODE........: X UPDATE _ RETRIEVAL

PFKEY SIMULATION..: X OFF _ ON

W X

When you are successfully signed on to the IDD menu facility, the following message
is displayed on the Master Selection screen:

SIGNON TO IDD WAS SUCCESSFUL

From the Master Selection screen, you can display the Process Entity screen and
define process module XXXDADD-PREMAP, as described in Step 2.

12.3.2 Step 2: Define process module XXXDADD-PREMAP

In this step, you will define process module XXXDADD-PREMAP. This process
module displays the dialog's map with a message. This processing is performed by the
DISPLAY command, as shown below.

DISPLAY MSG TEXT

'ENTER DEPARTMENT INFORMATION, OR SELECT: MOD, BACK, OR EXIT'.

The map is displayed the message that is defined here between single quotation marks.
In this example, the DISPLAY command is entered on two lines and is ended by a
period (.).

You use the following IDD menu facility screens to define process modules:

1. Use the Process Entity screen to specify basic information about the process
module, including the module's name.

2. Use the Process Source screen to enter source commands for the process module.

Chapter 12. Adding Process Logic to a Dialog 12-11

12.3 Defining process modules using IDD

Process Entity screen: To begin defining process module XXXDADD-PREMAP,
you display the Process Entity screen in any of the following ways:

■ Type the identifier for the screen in the command area and press [Enter].

■ Type a nonblank character in front of a screen identifier and press [Enter].

■ Press a control key to display the associated screen.

R S
COMPUTER ASSOCIATES INTERNATIONAL CAGJF?

IDD REL 15.? CCC MASTER SELECTION CCC TOP

 -> proc
SIGNON TO IDD WAS SUCCESSFUL

DICTIONARY NAME...: DEMO NODE NAME..:

 USER NAME.........:

 PASSWORD..........:

USAGE MODE........: X UPDATE _ RETRIEVAL

PFKEY SIMULATION..: X OFF _ ON

 _ ATTR = ATTRIBUTE <PF2> x PROC = PROCESS <PF3>
 _ CLAS = CLASS <PF4> _ PROG = PROGRAM <PF5>

 _ ELEM = ELEMENT <PF6> _ RECD = RECORD <PF7>

 _ FILE = FILE <PF8> _ TABL = TABLE <PF9>

 _ MODU = MODULE <PF1?> _ USER = USER <PF11>

 _ ENTL = USER DEFINED ENTITY LIST _ SYST = SYSTEM

 _ MSGS = MESSAGE

 _ QFIL = QFILE _ OPTI = OPTIONS

 _ DISP = DISPLAY ALL _ HELP = HELP <PF1>

W X

Process Entity screen: The Process Entity screen is displayed.

R S
IDD REL 15.? CCC PROCESS ENTITY CCC PROC

 ->

 DICT=DEMO

 X DISPLAY PROCESS NAME....:

 _ MODIFY

 _ ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

 DESCRIPTION.....:

 _ SRCE = PROCESS SOURCE <PF9> _ PROX = PROCESS EXTENSION <PF11>

 _ PRSY = WITHIN SYSTEM

 _ REGN = USER REGISTRATION <PF2> _ PUBL = PUBLIC ACCESS <PF3>

 _ CLAT = CLASS/ATTRIBUTES <PF4> _ RKEY = RELATIONAL KEYS <PF5>

 _ COMM = COMMENTS <PF6> _ COML = COMMENT KEY LIST <PF7>

 _ HIST = HISTORY <PF8> _ COPY = SAME AS/COPY FROM

 _ XREF = CROSS REFERENCE <PF1?> _ HELP = HELP <PF1>

W X

12-12 CA-ADS User Guide

12.3 Defining process modules using IDD

Screen prompts: When you define a process module, you usually specify informa-
tion for the following Process Entity screen prompts:

■ PROCESS NAME — You must supply a process module name. The name that
you specify must be unique.

■ DISPLAY — You deselect the DISPLAY action when you intend to add a new
process module.

To do this, type a blank over the X displayed to the left of the action.

■ ADD — You select the ADD action to specify that you are defining a new
process module.

To do this, type a nonblank character to the left of the action.

■ DESCRIPTION — You optionally type a brief description of the process module.

Defining the XXXDADD-PREMAP process module: You define the above
basic information for a process module by using the Process Entity screen. For
example, you define process module XXXDADD-PREMAP by:

■ Deselecting the DISPLAY action by typing a space over the X to its left.

■ Typing the name for the process module. (You can use your initials instead of
XXX.)

■ Selecting the ADD action.

■ Optionally typing a description of the process.

R S
IDD REL 15.? CCC PROCESS ENTITY CCC PROC

 ->

 DICT=DEMO

 DISPLAY PROCESS NAME....: xxxdadd-premap
 _ MODIFY

 x ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

DESCRIPTION.....: display map to add departments

 _ SRCE = PROCESS SOURCE <PF9> _ PROX = PROCESS EXTENSION <PF11>

 _ PRSY = WITHIN SYSTEM

 _ REGN = USER REGISTRATION <PF2> _ PUBL = PUBLIC ACCESS <PF3>

 _ CLAT = CLASS/ATTRIBUTES <PF4> _ RKEY = RELATIONAL KEYS <PF5>

 _ COMM = COMMENTS <PF6> _ COML = COMMENT KEY LIST <PF7>

 _ HIST = HISTORY <PF8> _ COPY = SAME AS/COPY FROM

 _ XREF = CROSS REFERENCE <PF1?> _ HELP = HELP <PF1>

W X

When you press [Enter], IDD redisplays the Process Entity screen with a message:

Chapter 12. Adding Process Logic to a Dialog 12-13

12.3 Defining process modules using IDD

■ If the process module is successfully defined, the Process Entity screen displays
a message like:

PROCESS 'XXXDADD-PREMAP' VERSION 1 ADDED

■ If the process module cannot be defined, the Process Entity screen displays a
different message than the message indicated above.

Read the message to determine the problem. You can type over any errors, and
then press [Enter] again.

Entering source statements: After you specify basic information about a process
module, you use the Process Source screen to enter process commands for the process
module.

To display the Process Source screen:

■ Type the identifier for the screen in the command area and press [Enter].

■ Type a nonblank character in front of a screen identifier and press [Enter].

■ Press a control key to display the associated screen.

R S
IDD REL 15.? CCC PROCESS ENTITY CCC PROC

 -> srce
PROCESS 'XXXDADD-PREMAP' VERSION 1 ADDED

 _ DISPLAY PROCESS NAME....: XXXDADD-PREMAP

 _ MODIFY

 X ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

DESCRIPTION.....: DISPLAY MAP TO ADD DEPARTMENTS

 x SRCE = PROCESS SOURCE <PF9> _ PROX = PROCESS EXTENSION <PF11>

 _ PRSY = WITHIN SYSTEM

 _ REGN = USER REGISTRATION <PF2> _ PUBL = PUBLIC ACCESS <PF3>

 _ CLAT = CLASS/ATTRIBUTES <PF4> _ RKEY = RELATIONAL KEYS <PF5>

 _ COMM = COMMENTS <PF6> _ COML = COMMENT KEY LIST <PF7>

 _ HIST = HISTORY <PF8> _ COPY = SAME AS/COPY FROM

 _ XREF = CROSS REFERENCE <PF1?> _ HELP = HELP <PF1>

W X

Entering process statements: Enter the process statements in the screen's text
entry area.

Caution: Don't type any characters beyond column 72.

12-14 CA-ADS User Guide

12.3 Defining process modules using IDD

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> NO DATA LINES CURRENTLY EXIST

PROCESS 'XXXDADD-PREMAP' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

display msg text
'enter department information, or select: mod, back, or exit'.

W X

 Considerations

■ Enclose the message text in single quotation marks.

■ End the DISPLAY command with a period.

After pressing [Enter], the Process Source screen is redisplayed. Look over the redis-
played process statement for possible syntax errors in the process code.

Note: IDD does not compile the process code; the code is compiled when the process
module is associated with a dialog under ADSC.

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> PAGE 1 LINE 1 1/2

PROCESS 'XXXDADD-PREMAP' VERSION 1 MODIFIED

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

DISPLAY MSG TEXT

'ENTER DEPARTMENT INFORMATION, OR SELECT: MOD, BACK, OR EXIT'.

W X

After you press [Enter], IDD adds the process module to the data dictionary and redis-
plays the Process Source screen with a message like:

PROCESS 'XXXDADD-PREMAP' VERSION 1 MODIFIED

Syntax errors: It is a good idea to look over the redisplayed commands for syntax
errors. This is because your syntax does not get compiled until you add the process
module to a dialog by using ADSC. Typical syntax errors include:

■ Process statements that extend beyond column 72

 ■ Omitted keywords

■ Misspelled comments or record element names

 ■ Omitted periods

■ Omitted or misplaced single quotation marks

■ Single quotation marks entered as double quotation marks

Chapter 12. Adding Process Logic to a Dialog 12-15

12.3 Defining process modules using IDD

■ Double quotation marks entered as single quotation marks within a quoted string

If you make any errors on the Process Source screen, you can type over them and
press [Enter] again.

After you finish using the Process Source screen for process module
XXXDADD-PREMAP, you can proceed to define process module
XXXDADD-RESPONSE.

12.3.3 Step 3: Define process module XXXDADD-RESPONSE

Process module XXXDADD-RESPONSE processes data entered by the user. To add a
department record to the database, source commands for process module
XXXDADD-RESPONSE need to:

1. Verify that the department is new. To do this, the process module must deter-
mine that the unique department ID specified by the user does not already exist in
the database.

2. Add the department record to the database if it is a new record.

3. Redisplay the screen with a confirming message and allow the user to add
another department record.

Additionally, the process module needs to be able to transfer the user to another dialog
function (for example, to MODDEP) when requested by the user.

Commands for XXXDADD- RESPONSE: Below are the sample commands for
process module XXXDADD- RESPONSE. These commands handle all of the above
processing. Notice that CA-ADS does not require you to code MOVE statements for
data in this case because the record displayed on the screen is the database record
itself. Also notice that one STORE command stores the entire Department record in
the database. You define a message for display to the user by including the message
in the DISPLAY command. In this example, the DISPLAY command is entered on
two lines and is ended by a period (.). This process module evaluates data input by
the user and stores new department records in the database.

12-16 CA-ADS User Guide

12.3 Defining process modules using IDD

 -┐

READY USAGE-MODE UPDATE. │

IF AGR-CURRENT-RESPONSE NE SPACES │

AND FIELD DEPT-ID-?41? NOT CHANGED │ 1

THEN │

EXECUTE NEXT FUNCTION. │

 -┘

 -┐

OBTAIN CALC DEPARTMENT. │

IF DB-REC-NOT-FOUND │ 2

THEN DO. │

 -┘

 -┐

STORE DEPARTMENT. │

DISPLAY MSG TEXT │

'DEPARTMENT ADDED'. │ 3

END. │

 -┘

 -┐

DISPLAY MSG TEXT │ 4

'TRY AGAIN, OR SELECT: MOD, BACK, OR EXIT'. │

 -┘

Y If the user enters a valid response name (such as MOD) in the map's
$RESPONSE field and doesn't try to add a new department, the runtime system
terminates this response process and transfers execution to the function (such as
MODDEP) requested by the user. (The runtime system stores valid responses in
system field AGR-CURRENT-RESPONSE.)

\ This statement attempts to locate the specified department in the database.

i If the specified department is not in the database, these statements store the
department in the database and then redisplay the screen with the DEPARTMENT
ADDED message.

j If the specified department already exists in the database, this statement redis-
plays the screen with the TRY AGAIN error message.

Specifying basic information for the process module: You start defining
process module XXXDADD-RESPONSE by using the IDD Process Entity screen to
define basic information for the process module.

Display a blank Process Entity screen.

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> proc PAGE 1 LINE 1 1/2

PROCESS 'XXXDADD-PREMAP' VERSION 1 MODIFIED

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

DISPLAY MSG TEXT

'ENTER DEPARTMENT INFORMATION, OR SELECT: MOD, BACK, OR EXIT'.

W X

Chapter 12. Adding Process Logic to a Dialog 12-17

12.3 Defining process modules using IDD

Process Entity screen: The Process Entity screen is displayed.

R S
IDD REL 15.? CCC PROCESS ENTITY CCC PROC

 ->

 DICT=DEMO

 DISPLAY PROCESS NAME....: xxxdadd-response
 _ MODIFY

 x ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

DESCRIPTION.....: test input and add new department

W X

After you press [Enter], the Process Entity screen is redisplayed with a message like:

PROCESS 'XXXDADD-RESPONSE' VERSION 1 ADDED

This message indicates that your process module specifications have been added to the
data dictionary.

To continue defining process module XXXDADD-RESPONSE, you use the Process
Source screen to enter source commands.

Display the Process Source screen

R S
IDD REL 15.? CCC PROCESS ENTITY CCC PROC

 -> srce
PROCESS 'XXXDADD-RESPONSE' VERSION 1 ADDED

 _ DISPLAY PROCESS NAME....: XXXDADD-RESPONSE

 _ MODIFY

 X ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

DESCRIPTION.....: TEST INPUT AND ADD NEW DEPARTMENT

W X

Enter process statements on the Process Source screen.

 Considerations

■ Periods and single quotation marks shown on this screen are required.

■ Don't extend statements beyond column 72.

■ You can enter blank lines in your source to improve readability.

12-18 CA-ADS User Guide

12.3 Defining process modules using IDD

■ You can type spaces to indent lines, making source statements easier to read and
debug.

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> PAGE 1 LINE 1 1/3

PROCESS 'XXXDADD-RESPONSE' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

ready usage-mode update.
if agr-current-response ne spaces
and field dept-id-!41! not changed
then

execute next function.

obtain calc department.
if db-rec-not-found
then do.

 store department.
display msg text

 'department added'.
end.

display msg text
'try again, or select: mod, back, or exit'.

W X

After you press [Enter], the Process Source screen is redisplayed. Look over the redis-
played process statements for possible syntax errors. Make sure that the period is
outside the single quote on the message.

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> PAGE 1 LINE 1 1/14

PROCESS 'XXXDADD-RESPONSE' VERSION 1 MODIFIED

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

READY USAGE-MODE UPDATE.

IF AGR-CURRENT-RESPONSE NE SPACES

AND FIELD DEPT-ID-?41? NOT CHANGED

THEN

EXECUTE NEXT FUNCTION.

OBTAIN CALC DEPARTMENT.

IF DB-REC-NOT-FOUND

THEN DO.

STORE DEPARTMENT.

DISPLAY MSG TEXT

'DEPARTMENT ADDED'.

END.

DISPLAY MSG TEXT

'TRY AGAIN, OR SELECT: MOD, BACK, OR EXIT'.

W X

After you press [Enter], IDD adds the process module to the data dictionary and redis-
plays the Process Source screen with a message like:

Chapter 12. Adding Process Logic to a Dialog 12-19

12.3 Defining process modules using IDD

PROCESS 'XXXDADD-RESPONSE' VERSION 1 MODIFIED

This message indicates that the entry for your process module in the data dictionary
has successfully been modified.

If you notice any errors on the redisplayed screen, you can type over the errors to
correct them, and then press [Enter] again.

After you finish defining process module XXXDADD-RESPONSE, you can exit from
IDD.

12.3.4 Step 4: Exit from IDD

When you are using the IDD menu facility under the transfer control facility (TCF),
you can exit from IDD by using the SWITCH command.

You can use SWITCH to either transfer to another development tool or return to
DC/UCF. In the this sample session, you will transfer to ADSC so that you can asso-
ciate process modules XXXDADD-PREMAP and XXXDADD-RESPONSE with dialog
XXXDADD.

To transfer to ADSC, enter the task code for ADSC (for example, ADSCT) along with
the SWITCH command in the command area of any IDD menu facility screen:

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> adsct PAGE 1 LINE 1 1/14

PROCESS 'XXXDADD-RESPONSE' VERSION 1 MODIFIED

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

READY USAGE-MODE UPDATE.

IF AGR-CURRENT-RESPONSE NE SPACES

AND FIELD DEPT-ID-?41? NOT CHANGED

THEN

EXECUTE NEXT FUNCTION.

OBTAIN CALC DEPARTMENT.

IF DB-REC-NOT-FOUND

THEN DO.

STORE DEPARTMENT.

DISPLAY MSG TEXT

'DEPARTMENT ADDED'.

END.

DISPLAY MSG TEXT

'TRY AGAIN, OR SELECT: MOD, BACK, OR EXIT'.

W X

12-20 CA-ADS User Guide

12.4 Adding process modules to dialogs using ADSC

12.4 Adding process modules to dialogs using ADSC

You now will use ADSC to add process modules XXXDADD-PREMAP and
XXXDADD-RESPONSE to dialog XXXDADD. You will associate a subschema with
the dialog to make a subset of the database available to dialog XXXDADD and its
process modules. Additionally, you will specify dialog options to help you debug the
dialog.

Steps: To enhance dialog XXXDADD, you will perform the following steps:

1. Retrieve dialog XXXDADD.

2. Specify dialog options for use during development.

3. Add a subschema to the dialog.

4. Add the premap and response processes to the dialog.

5. Recompile the dialog load module.

Steps for viewing and correcting compile-time errors in process modules are discussed
later in this chapter, in 12.4.6, “Correct errors in process modules” on page 12-34.

12.4.1 Step 1: Retrieve dialog XXXDADD

In order to retrieve a dialog, you use ADSC.

If you did not transfer to ADSC earlier in this chapter when you exited from IDD, you
need to invoke ADSC by using the task code (for example, ADSCT) for ADSC. For
more information on invoking ADSC, see 9.3.1, “Step 1: Invoke ADSC” on page 9-8.

ADSC begins by displaying the Main Menu screen. You use a blank Main Menu
screen to retrieve a dialog.

Screen prompts: You typically enter information after one or more of the fol-
lowing Main Menu screen prompts:

■ Dialog name — You must specify the name (XXXDADD) that you used when
you defined the dialog in 9.3.2, “Step 2: Define dialog XXXDADD” on
page 9-9.

■ Dictionary name — You must specify the same dictionary, if any, as you speci-
fied for your dialog in Chapter 4. The correct dictionary name may already be
displayed in this field.

■ Dictionary node — You must specify the same dictionary node, if any, as you
specified for your dialog definition. The correct dictionary node may already be
displayed in this field.

You use the ADSC Main Menu screen to retrieve dialog XXXDADD:

Chapter 12. Adding Process Logic to a Dialog 12-21

12.4 Adding process modules to dialogs using ADSC

R S
Add Modify Compile Delete Display Switch

 .___.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

Dialog name xxxdadd
Dialog version 1
Dictionary name demo
Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Press [Enter] to retrieve the application.

After you press [Enter], ADSC redisplays the Main Menu screen with a message con-
firming that the dialog is available for modification.

Note: If the dialog has not been explicitly released (using the Release option of the
Modify action on the action bar of the Main Menu), naming the dialog on the
Main Menu screen retrieves that definition for modification. If the dialog has
been released, you use the ADSC Main Menu screen to check out the dialog
definition for modification (using the Checkout option of the Modify action on
the action bar of the Main Menu).

For information on checking out a dialog, see CA-ADS Reference.

If the dialog has been released, subsequently checked out to another developer
and not released by that developer, you will not be able to check it out.

After you press [Enter], ADSC displays dialog XXXDADD on the Main Menu screen,
with appropriate messages.

You can now specify dialog options on the Options and Directives screen. You access
the Options and Directives screen by choosing option 1 from the Main Menu.

12-22 CA-ADS User Guide

12.4 Adding process modules to dialogs using ADSC

12.4.2 Step 2: Specify dialog options

You use the Options and Directives screen to specify options to help you develop and
debug dialogs. A sample Options and Directives screen is shown below:

Sample Options and Directives screen

R S
Options and Directives

 Dialog XXXDADD Version 1

Message prefix DC

Autostatus record ADSO-STAT-DEF-REC

Version 1

Options and directives _ Mainline dialog

_ Symbol table is enabled

_ Diagnostic table is enabled

/ Entry point is premap

_ COBOL moves are enabled

/ Activity logging

/ Retrieval locks are kept

/ Autostatus is enabled

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

Screen prompts: During development, you typically use the following Options and
Directives screen prompts to enable options for the dialog:

■ Symbol table is enabled — You can create a symbol table to detect, trace, and
resolve programming errors in dialogs.

The symbol table stores information about the dialog, such as record element
names and internal line numbers for commands in process modules. This informa-
tion allows the online debugger to track, set breakpoints in, and alter execution of
a dialog.

>> For more information on using the online debugger with CA-ADS, see
CA-ADS Reference.

■ Diagnostic table is enabled — You can create a diagnostic table to help locate
the causes for dialog abends during development.

When a dialog abends, the dialog's diagnostic table allows the Dialog Abort
Information screen to display the process command that was being executed
when the abend occurred.

>> For more information on diagnostic tables, see CA-ADS Reference.

Chapter 12. Adding Process Logic to a Dialog 12-23

12.4 Adding process modules to dialogs using ADSC

When the application is ready for production use, you can disable dialog symbol and
diagnostic tables and disable display of the Dialog Abort Information screen.

Specifying XXXDADD options: To specify development options for dialog
XXXDADD, display and use the Options and Directives screen. Enable the symbol
table and diagnostic table.

R S
Options and Directives

 Dialog XXXDADD Version 1

Message prefix DC

Autostatus record ADSO-STAT-DEF-REC

Version 1

Options and directives _ Mainline dialog

/ Symbol table is enabled
/ Diagnostic table is enabled
/ Entry point is premap

_ COBOL moves are enabled

/ Activity logging

/ Retrieval locks are kept

/ Autostatus is enabled

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

After you press [Enter], ADSC displays a confirming message on the Options and
Directives screen to inform you that your specifications contain no errors.

You are now ready to add database information to the dialog definition. Return to the
Main Menu by pressing [PF3].

12.4.3 Step 3: Add a subschema

Using non-SQL DML statements to access a database: A non-SQL defined
database is defined by a schema. A schema typically includes definitions for the data-
base records required by your application. For example, the schema for a fully devel-
oped personnel application probably would include records for employee information,
job descriptions, and hospital and dental insurance information.

To promote efficient use of the database and other system resources at runtime, you
restrict each dialog to a specific subset of the database. Each subset of the database is
defined by a subschema. The subschema identifies the subset of the database that the
dialog can access at runtime.

The way that a subschema relates a dialog to the application's database is shown
below. Schemas and subschemas usually are defined by database administrators

12-24 CA-ADS User Guide

12.4 Adding process modules to dialogs using ADSC

(DBAs) or system administrators, based on application requirements. A subschema
determines the portion of the database (schema) available to the dialog at runtime.

You need to associate a subschema with each dialog that accesses a non-SQL defined
database using non-SQL DML statements. For example, you will associate a
subschema with dialog XXXDADD because commands in process module
XXXDADD-RESPONSE access the database to store new department information
using non-SQL DML statements.

You associate the subschema with the dialog before you add process
XXXDADD-RESPONSE so that ADSC can verify the process module's database com-
mands.

You use the Database Specifications screen to associate a subschema with dialog
XXXDADD.

Using SQL statements to access a database: An SQL-defined application
database is defined by tables associated with a schema. A schema typically includes
definitions for the tables required by your application. For example, the schema for a
fully developed personnel application probably would include tables for employee
information, job descriptions, and hospital and dental insurance information.

To promote efficient use of the database and other system resources at runtime in the
SQL environment, you identify an access module to be associated with the dialog. An
access module identifies the method of access that the dialog will use at runtime.

Access modules are made up of relational command modules (RCMs), and are usually
created by the application developer.

Chapter 12. Adding Process Logic to a Dialog 12-25

12.4 Adding process modules to dialogs using ADSC

>> For information on creating an access module, see CA-IDMS SQL Programming.

Modifying the sample dialogs: In the XXXDADD and XXXDUPD dialogs, you
are accessing a non-SQL defined database. Therefore, you must associate a subschema
with each of these dialogs.

You use the Database Specifications screen to associate a subschema with dialog
XXXDADD.

Accessing the Database Specifications screen: To access the Database Spec-
ifications screen, you enter 3 at the Screen prompt on the Main Menu.

R S
Add Modify Compile Delete Display Switch

 .___.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

Dialog name XXXDADD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 3 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Sample Database Specifications screen: The Database Specifications screen is
displayed.

12-26 CA-ADS User Guide

12.4 Adding process modules to dialogs using ADSC

R S
 Database Specifications

 Dialog XXXDADD Version 1

Subschema ________

Schema ________

Version ____

Access Module XXXDADD

SQL Compliance _ ANSI-standard SQL

Date Default Format _ 1. ISO

Time Default Format _ 2. USA

 3. EUR

 4. JIS

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

Screen prompts: To associate a subschema with a dialog, you use the following
Database Specifications screen prompts:

■ Subschema — You name an existing subschema in response to this prompt. A
sample subschema name (EMPSS01) is used in this manual; a different name may
be required at your site.

■ Schema — You may need to name the schema for your application in response to
this prompt. Naming a schema usually is required only when your schema is not
unique.

For example, schemas typically are not unique when duplicate, identical develop-
ment and production databases are defined.

If you know the name of your schema, go ahead and specify it here.

Modifying XXXDADD dialog: Modify the XXXDADD dialog to include the
subschema EMPSS01.

Chapter 12. Adding Process Logic to a Dialog 12-27

12.4 Adding process modules to dialogs using ADSC

R S
 Database Specifications

 Dialog XXXDADD Version 1

Subschema empss!1
Schema

Version

Access Module XXXDADD

SQL Compliance _ ANSI-standard SQL

Date Default Format _ 1. ISO

Time Default Format _ 2. USA

 3. EUR

 4. JIS

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

Note: By default, the access module is given the same name as the dialog.

When you press [Enter], ADSC associates the named subschema with the dialog if
there are no errors, and then redisplays the screen with a confirming message.

A different message is displayed if ADSC detects any errors.

Read the message to determine the problem. Make sure that you have specified the
correct subschema on the Database Specifications screen. If you didn't specify a
schema name, ask others at your site whether a schema name is required. After you
change information on the screen, press [Enter] again.

If the error persists, verify that you specified the correct version of the subschema.

You are now ready to add process modules to the dialog definition. Return to the
Main Menu by pressing [PF3].

12.4.4 Step 4: Add process modules

Premap processes: You add a premap process to a dialog so the dialog can
perform processing or access database information before the dialog's map is dis-
played. If a dialog has a premap process, that process is executed as soon as the
dialog begins.

You add a premap process to a dialog by using the ADSC Process Modules screen.

Response processes: A response process enables a dialog to perform proc-
essing after the user inputs data on the map.

12-28 CA-ADS User Guide

12.4 Adding process modules to dialogs using ADSC

You can add any number of response processes to a dialog, enabling a dialog to
perform many different processing operations. At runtime, the response process exe-
cuted for the dialog is determined by actions taken by the user during dialog exe-
cution, as described later in this step.

You add a response process to a dialog by using the ADSC Process Modules screen.

Accessing the Process Modules screen: You access the Process Modules
screen by entering 5 at the Screen prompt on the Main Menu and pressing [Enter].

Sample Process Modules screen: The Process Modules screen is displayed.

R S
 Process Modules Page 1 of 1

 Dialog XXXDADD Version 1

 Name ________________________________ _ Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

 Name ________________________________ _ Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

 Name ________________________________ _ Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

 Name ________________________________ _ Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

C Type : 1=Declaration 2=Premap 3=Response 4=Default Response

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

Screen prompts: You specify information about the process modules after prompts
on the Process Modules screen:

■ Name — You specify a process module name after the Name prompt. By doing
this, you associate the process module with the dialog.

■ Version — You specify the version number of the associated process module as
specified in the dictionary.

■ Type — You specify the type of process module you have just named.

1 indicates that this is a declaration module used with SQL only.

>> For information on declaration modules, see CA-IDMS SQL Programming.

2 indicates that this is a premap process.

3 indicates that this is a response process.

4 indicates that this is the default response process for the dialog.

Chapter 12. Adding Process Logic to a Dialog 12-29

12.4 Adding process modules to dialogs using ADSC

At runtime, the dialog's default response process (if any) is executed when the
user inputs information on the dialog's map without specifying any response
process to be executed.

You will define a premap process and a response process for dialog
XXXDADD. You will not define a default response process.

■ Key — If the process module is defined as a response process, you can associate
a key (for example, [Enter] or [PF1]) with the process.

At runtime, the response process is executed for the dialog if the user presses the
associated control key while viewing the dialog's map.

You will associate [Enter] with response process XXXDADD-RESPONSE.

■ Value — If the process module is defined as a response process, you can asso-
ciate a value (for example, MOD) with the process.

At runtime, the response process is executed when the dialog's user enters the
response field value in the screen's $RESPONSE field.

For example, assume that you defined response process XXXDADD-MOD to be
executed when the user requests transfer to function MODDEP. In this case, you
would give response process XXXDADD-MOD a response field value of MOD.
This way, MOD first executes XXXDADD-MOD, which then transfers control to
function MODDEP.

You will not add a response field value to response process
XXXDADD-RESPONSE.

Using ENTER as a key: When you add response process XXXDADD-RESPONSE
to dialog XXXDADD, you will associate the process with [Enter]. ENTER is a good
key for this response process because users are accustomed to pressing [Enter] to input
information, and are more likely to press [Enter] than a PF key when unfamiliar with
the application.

At runtime, whenever the user presses [Enter] to input data for dialog XXXDADD,
response process XXXDADD-RESPONSE is executed.

ENTER is often associated with the response process that performs the dialog's major
processing. To make it easier for users to input information, the runtime system auto-
matically executes a dialog's ENTER response process when the user inputs informa-
tion without otherwise specifying a response process to execute.

In the sample application, when using dialog XXXDADD, response process
XXXDADD-RESPONSE is executed if the user:

■ Inputs a new department record by pressing [Enter]

■ Requests transfer to the MODDEP function by using the MOD response or by
pressing [PF2]. This is true in this dialog because:

1. Response process XXXDADD-RESPONSE is associated with [Enter].

12-30 CA-ADS User Guide

12.4 Adding process modules to dialogs using ADSC

2. No response process is associated with MOD or with [PF5], both of which are
valid the current function (ADDDEP).

Immediately executable function: As an application developer, you can inhibit
execution of XXXDADD-RESPONSE when the user requests transfer to MODDEP.
To do this, you make function MODDEP an immediately executable function.

At runtime, when the user requests transfer to an immediately executable function,
control transfers immediately to that function. No response process is executed before
transfer occurs.

For more information on immediately executable functions, see the CA-ADS Reference.

The EXECUTE NEXT FUNCTION command: In this chapter, you will not make
function MODDEP an immediately executable function. Instead, you will enable
response process XXXDADD-RESPONSE to transfer control. To do this, you include
an EXECUTE NEXT FUNCTION command in the process module. When executed,
this command transfers control to the function specified by the user.

For example, when you defined XXXDADD-RESPONSE by using IDD earlier in this
chapter, you included the EXECUTE NEXT FUNCTION command in the following
conditional structure:

IF AGR-CURRENT-RESPONSE NE SPACES

AND DEPT-ID-?415 NOT CHANGED

THEN

EXECUTE NEXT FUNCTION. �-- Control transfers to the next

function only when the

above two conditions are met.

AGR-CURRENT-RESPONSE is an element in the system-supplied
ADSO-APPLICATION-GLOBAL-RECORD that the runtime system uses for flow-of-
control processing.

This conditional structure causes the following different events to occur at runtime:

■ A department is added and control remains in dialog XXXDADD whenever the
user enters new department information.

■ Control transfers when the user enters a valid response name
(AGR-CURRENT-RESPONSE NE SPACES) without entering a new department
ID.

Adding process modules to the dialog: You use the Process Modules screen to
add two processes to the dialog:

Process module name Type Comments

XXXDADD-PREMAP Premap

XXXDADD-RESPONSE Response Key: [Enter]

Chapter 12. Adding Process Logic to a Dialog 12-31

12.4 Adding process modules to dialogs using ADSC

R S
 Process Modules Page 1 of 1

 Dialog XXXDADD Version 1

 Name xxxdadd-premap__________________ 2 Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

 Name xxxdadd-response________________ 3 Type

Version ____ _ Execute on errors

 Key enter Value ________________________________ _ Drop

 Name ________________________________ _ Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

 Name ________________________________ _ Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

C Type : 1=Declaration 2=Premap 3=Response 4=Default Response

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

ADSC displays a message confirming that the named process module was found in the
dictionary. After the processes have been identified, you can recompile the dialog.

12.4.5 Step 5: Recompile the dialog

In this chapter, you have enhanced dialog XXXDADD by adding a subschema, premap
process, and response process to the dialog definition. To update these modifications
to the dialog load module, you must recompile the process modules and recompile the
dialog by selecting the compile activity from the action bar on the Main Menu:

12-32 CA-ADS User Guide

12.4 Adding process modules to dialogs using ADSC

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile log Compiler

2. Display messages

------------------------- nternational, Inc.

 F3=Exit

Dialog name XXXDADD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

After you press [Enter] to recompile the dialog, ADSC compiles the process module
source code.

ADSC displays a confirming message if no errors are found.

This indicates that the compiled process modules were successfully added to the
dialog. If there are no errors, ADSC then creates the dialog load module and redis-
plays the Main Menu.

Error messages: If ADSC finds errors while compiling a process, it displays an
error message.

In this case, you display and correct errors in the process module as discussed in
12.4.6, “Correct errors in process modules” on page 12-34, later in this chapter.

Different messages are displayed depending on the nature of the error.

Read the message to determine the problem. Verify that you have correctly typed the
process module name on the Process Modules screen. You can type over errors on the
screen, and then press [Enter] again.

After you successfully recompile dialog XXXDADD, you can exit from ADSC by
pressing [PF3].

Note: When a dialog is added or checked out, a queue is established. The queue is
deleted only when:

■ The dialog is released with no uncompiled changes

■ The dialog is deleted

Chapter 12. Adding Process Logic to a Dialog 12-33

12.4 Adding process modules to dialogs using ADSC

A dialog with changes that is released can be retrieved by another developer, but the
queue remains.

12.4.6 Correct errors in process modules

When you add a premap or response process to a dialog, ADSC compiles the related
process module commands. A fully compiled copy of the process module is stored in
the dialog.

Compile time errors: When errors arise at compile time:

1. ADSC inserts diagnostic messages in the dialog's copy of the process module.

2. ADSC redisplays the Main Menu screen, as appropriate, with a message indicating
that there is an error in a particular process module.

In this case, the process module is not added to the dialog. If ADSC indicates that
there are compile errors, you must:

1. Display diagnostic messages for the process module.

2. Correct errors, including:

■ Discrepancies between the process module and other dialog components

■ Syntax errors in the process module source.

3. Recompile the process module and update the process module in the dialog by
recompiling the dialog load module.

12.4.6.1 Display structural messages

Some errors occur from the definition of the process module in ADSC. These are
called structural errors.

When a message indicates that there are structural errors in your definition, access the
Structural Error Display screen using the Display messages option from the
Compile activity on the action bar.

12-34 CA-ADS User Guide

12.4 Adding process modules to dialogs using ADSC

R S
Add Modify Compile Delete Display Switch

 .___.

 2 1. Compile log Compiler

2. Display messages

------------------------- nternational, Inc.

 F3=Exit

Dialog name XXXDADD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Select 2, then Enter to see structural errors.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Structural Error Display screen

R S
Structural Error Display

DC498163 Response process XXXDADD-PREMAP must have a PFKEY or $Response

W X

Use this screen to find discrepancies between the process module and other compo-
nents of the dialog. A missing or incorrect dialog component (for example, a
subschema, map, or work record) causes compile-time errors for process commands
that reference the component.

12.4.6.2 Display diagnostic messages

You display the ADSC Dialog Process Source screen to view a listing of the process
module with diagnostic messages. You use this screen to find syntax errors in process
module commands. Syntax errors (for example, mistyped commands and omitted
periods) are the most frequent cause of compile-time errors.

Accessing the Dialog Process Source screen: To access the Dialog Process
Source screen,

Chapter 12. Adding Process Logic to a Dialog 12-35

12.4 Adding process modules to dialogs using ADSC

When a message indicates that there are compile errors in your process code, use the
Display messages option from the Compile activity on the action bar first to access
the Compiled Process Modules screen.

R S
Add Modify Compile Delete Display Switch

 .___.

 2 1. Compile log Compiler

2. Display messages

------------------------- nternational, Inc.

 F3=Exit

Dialog name XXXDADD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Select 2, then Enter to see compile errors.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Compiled Process Modules screen

R S
Compiled Process Modules Page 1 of 1

 Dialog XXXDADD Ver 1

 Name XXXDADD-PREMAP 1 Commands

 Version ???1 Type 3 1 Errors

Key PF3 Value 2 1. Display
 2. Print

 Name ________________________________ Commands

 Version ____ Type _ Errors

Key _____ Value _ 1. Display

 2. Print

 Name ________________________________ Commands

 Version ____ Type _ Errors

Key _____ Value _ 1. Display

 2. Print

 Name ________________________________ Commands

 Version ____ Type _ Errors

Key _____ Value _ 1. Display

 2. Print

 Type: 1=Declaration 2=Premap 3=Response 4=Default Response

Select a process for Display or Print.

 F1=Help F3=Exit F7=Bkwd F8=Fwd F11=Dialog-level messages

W X

12-36 CA-ADS User Guide

12.4 Adding process modules to dialogs using ADSC

The Compiled Process Modules screen shows the total number of commands in the
process module and the number of errors encountered. You have the option of dis-
playing the process code with the errors noted or printing them.

To display the process code, select 2 next to the process module you want to see and
press [Enter].

The Dialog Process Source screen is then displayed.

Dialog Process Source screen

R S
Dialog Process Source Page 1 of 1

 .___.

 <PROCESS> XXXDADD-PREMAP ???1

1?? DSPLAY MSG TEXT

'ENTER DEPARTMENT INFORMATION, OR SELECT: MOD, BACK, OR EXIT'.

 $

 <E> DC157??1 INVALID INITIATING KEYWORD FOR COMMAND. STMT FLUSHED.

 .__.

 F3=Exit F5=IDD F7=Bkwd F8=Fwd F11=Next.error

W X

Some errors cause error messages to be displayed for subsequent correct commands.
For example, if you forget to put a period after a command, the next command line is
incorrectly treated as a continuation of the first command.

Determining the causes for compile-time errors: When you attempt to add
this process module to a dialog, compile errors will occur. You use the Dialog
Process Source screen to determine the causes for compile-time errors. To do this,
you:

1. View the Compiler Process Modules screen by selecting the Display messages
option from the Display activity on the action bar of the Main Menu.

2. View the Dialog Process Source screen by selecting the Display activity from
the Compiled Process Modules screen.

Messages are displayed on this screen after statements that ADSC cannot compile.
For example, assume that you made the following mistakes when you defined
process module XXXDADD-RESPONSE earlier in this chapter:

Chapter 12. Adding Process Logic to a Dialog 12-37

12.4 Adding process modules to dialogs using ADSC

READY USAGE MODE UPDATE. �-- There should be a dash (-)

IF AGR-CURRENT-RESPONSE NE SPACES between USAGE and MODE.

AND FIELD DEPT-ID-?41? NOT CHANGED

THEN

EXECUTE NEXT FUNCTION.

OBTAIN CALC DEPARTMENT �-- There should be a period at

IF DB-REC-NOT-FOUND the end of this statement.

THEN DO.

 STORE DEPARTMENT.

DISPLAY MSG TEXT

 'DEPARTMENT ADDED'.

END.

DISPLAY MSG TEXT

'TRY AGAIN, OR SELECT: MOD, BACK, OR EXIT'.

■ A dollar sign ($) is displayed below the first character in a statement in error.

■ The dash missing from the preceding USAGE-MODE keyword causes an
error message.

■ The period missing from the OBTAIN command causes the subsequence IF
statement to be in error.

■ The error in the above IF statement causes the error for the END statement.

In this example, the error in the USAGE-MODE keyword results in diagnostic
messages for two correct commands that follow the OBTAIN command. You do
not need to change these two correct commands.

3. Page the screen back and forth if necessary:

■ Press [PF8] to page forward.

■ Press [PF7] to page backward.

4. Note what requires correction in the process module source or in other dialog
components.

It is a good idea to write down the errors that you note.

When you have looked at your errors, press [PF5] to go directly to IDD. The process
module is question will be displayed on the screen.

12.4.6.3 Correct structural errors

At compile time, errors in a process module can arise because of discrepancies
between the process module and other dialog components. These are called structural
errors.

For example, you may have added the wrong subschema to the dialog. In this case,
error messages are returned for process commands that reference records that exist in
the correct subschema but don't exist in the specified subschema.

12-38 CA-ADS User Guide

12.4 Adding process modules to dialogs using ADSC

To correct discrepancies caused by other dialog components, you display the
ADSC screen that associates the component with the dialog:

■ For a map, display the Map Specifications screen.

■ For a subschema, display the Database Specifications screen.

■ For a work record, display the Records and Tables screen.

Dialog XXXDADD doesn't contain a work record, so you don't need to check for
work-record errors in the dialog.

Checking the subschema definition: For example, you check the subschema
definition for dialog XXXDADD by displaying the Database Specifications screen:

R S
 Database Specifications

 Dialog XXXDADD Version 1

Subschema EMPSS?1

Schema EMPSCHM

Version 1

Access Module XXXDADD

SQL Compliance _ ANSI-standard SQL

Date Default Format _ 1. ISO

Time Default Format _ 2. USA

 3. EUR

 4. JIS

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

When checking a component specification, you need to verify that both the correct
name and version number are specified.

For example, dialog XXXDADD uses subschema EMPSS01. This subschema is
defined in version 1 of schema EMPSCHM. Some sites define different copies of
schema EMPSCHM. In this case, you check the Database Specifications screen:

 Expected specification:

SUBSCHEMA.: EMPSS?1 SCHEMA: EMPSCHM VERSION: 1

 Incorrect specification:

SUBSCHEMA.: EMPSS?1 SCHEMA: EMPSCHM VERSION: 2

Chapter 12. Adding Process Logic to a Dialog 12-39

12.4 Adding process modules to dialogs using ADSC

To correct any specifications, type the correct information over the previous specifica-
tion. When dialog components are all specified correctly, you can proceed to correct
any syntax errors in the process module.

12.4.6.4 Correct syntax errors

IDD is used to define process modules and to correct syntax errors in the process
modules. To transfer from ADSC to IDD, you press [PF5] from the Dialog Process
Source screen.

Note: When you transfer to IDD, your current ADSC session is saved. You can
transfer back to ADSC and resume the saved definition session when you are
done with IDD.

The IDD screen will display the process module in question.

R S
IDD 15.? ONLINE NO ERRORS DICT=DEMO 1/4

MOD PROCESS XXXDADD-PREMAP

PROCESS SOURCE FOLLOWS

DSPLAY MSG TEXT

'ENTER DEPARTMENT INFORMATION, OR SELECT: MOD, BACK, OR EXIT'.

 MSEND.

W X

Correct the errors in the process module and press [Enter] to store the revised code.

After you correct all errors in a process module, you can return to the dialog definition
in ADSC. To do this, enter end command area at the top of the IDD screen:

-> end

 [Enter]

12.4.6.5 Update dialogs that use the process module

After you correct errors in a process module, you use ADSC to update the corrected
process module in the dialog. When you do this, ADSC attempts to compile the
source commands in the corrected process module. If the module compiles without
errors, ADSC adds the process module to the dialog.

12-40 CA-ADS User Guide

12.4 Adding process modules to dialogs using ADSC

Recompile the dialog: One way to update modified process modules in a dialog is
to recompile the dialog:

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile log Compiler

2. Display messages

------------------------- nternational, Inc.

 F3=Exit

Dialog name XXXDADD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

When you press [Enter], ADSC attempts to compile corrected process modules. If
there are no errors:

1. ADSC adds the compiled module to the dialog.

2. ADSC recompiles the dialog load module.

3. ADSC displays the Main Menu screen with a confirming message

When the process module is successfully corrected and updated to the dialog, you can
resume definition and testing procedures for the dialog.

Chapter 12. Adding Process Logic to a Dialog 12-41

12.5 Executing the application

12.5 Executing the application

To test process logic in dialog XXXDADD, you will:

1. Invoke the Department application.

2. Display function ADDDEP, which executes dialog XXXDADD.

3. Try out process logic to add sample department records.

To invoke the Department application from DC/UCF, you enter the task code
(XXXDEPT) for the application. For example, when using CA-IDMS/DC, you invoke
the Department application as shown:

ENTER NEXT TASK CODE:

xxxdept

 [Enter]

For more information on invoking the Department application, see 9.4, “Instructions
for executing the application” on page 9-17.

While testing dialog XXXDADD in this chapter, it is recommended that you write
down the ID number of each sample department record that you add to the database.
This will help you later in this manual, when you need to locate, modify, and delete
your sample department records.

From DEPTMENU, you can display the ADDDEP function and try out dialog
XXXDADD:

 x ADD

 [Enter]

Enter sample information.

Note: You must specify a unique ID number for each department. Try entering the
last four digits of your home phone number.

Entering sample information

12-42 CA-ADS User Guide

12.5 Executing the application

R S

 FUNCTION: ADDDEP

 DATE....: 1?/3?/99

 DEPARTMENT INFORMATION

DEPARTMENT ID: 9876
NAME: test department
HEAD ID ..: 1234

 RESPONSE:

W X

Data is redisplayed: The data is redisplayed after it is added.

R S

 FUNCTION: ADDDEP

 DATE....: 1?/3?/99

 DEPARTMENT INFORMATION

DEPARTMENT ID: 9876

NAME: TEST DEPARTMENT

HEAD ID ..: 1234

 RESPONSE:

 DEPARTMENT ADDED

W X

Notice the message you defined in response process XXXDADD-RESPONSE. It con-
firms that the redisplayed data has been added to the database.

When you press [Enter] to add a new department, response process
XXXDADD-RESPONSE is executed. Statements in this response process test your
input data and, for a new department, add the data to the sample database. The fol-
lowing diagram shows how components of dialog XXXDADD are executed at runtime
when you use the dialog to add a department to the database. Dialog XXXDADD
allows you to add new departments to the database. Execution remains in the dialog
until the user requests another function (for example, MOD).

In dialog XXXDADD, you add a new department to the database by pressing [Enter].
To verify that your process logic keeps you from adding duplicate departments, try
pressing [Enter] again to add the redisplayed department information.

After you press [Enter], the screen redisplays the department values along with an
error message:

TRY AGAIN, OR SELECT: MOD, BACK, OR EXIT

Chapter 12. Adding Process Logic to a Dialog 12-43

12.5 Executing the application

You defined this error message in process module XXXDADD-RESPONSE. The
message is displayed whenever the specified department record already exists in the
database. In this case, the duplicate record is not added to the database.

Try seeing what happens if you enter a new department record and also specify a valid
response:

Continuing to test the XXXDADD dialog

■ Type new values over the redisplayed department information.

■ Enter a valid response name (for example, MOD).

R S

 FUNCTION: ADDDEP

 DATE....: 1?/3?/99

 DEPARTMENT INFORMATION

DEPARTMENT ID: 5432
NAME: sample department
HEAD ID ..: 1111

 RESPONSE: mod

TRY AGAIN, OR SELECT: MOD, BACK, OR EXIT

W X

12-44 CA-ADS User Guide

12.5 Executing the application

Notice the message displayed when you added TEST DEPARTMENT above does not
affect your current add operation.

After you press [Enter], dialog XXXDADD's screen is redisplayed with the following
message:

DEPARTMENT ADDED

Mode of execution: Even when you specify a valid response, control remains in
dialog XXXDADD when you add a new department. This type of execution is called
STEP mode execution. In STEP mode, the screen is always redisplayed with a con-
firming message after a successful add, modify, or delete operation.

Dialog XXXDADD executes in STEP mode because of the following conditional
command that you coded at the beginning of response process
XXXDADD-RESPONSE:

IF AGR-CURRENT-RESPONSE NE SPACES �-- If the user specifies

a valid response

AND DEPT-ID-?415 NOT CHANGED �-- and doesn't enter a new

 department ID,

THEN

EXECUTE NEXT FUNCTION. �-- control transfers to the

 next function.

Dialogs do not have to execute in STEP mode. As an application developer, you can
make use of the following execution strategies when developing an application:

■ Dialog response processes can execute in FAST mode. In this case, you write
process logic that can handle necessary data operations and then transfer control
without first redisplaying the screen. If the user inputs errors, the current screen
can be redisplayed with an error message.

This strategy benefits experienced users, who can input data and advance directly
to the next function without any extra keystrokes.

■ Application functions can be immediately executable. In this case, the runtime
system executes the function as soon as the user requests transfer to the function.
Process logic is not executed before the transfer occurs.

This strategy ensures that users do not inadvertently alter the database when trans-
ferring to another function. To make a function immediately executable, you use
the ADSA Response Definition screen.

>> For more information on immediately executable functions, see the CA-ADS
Reference.

Another test: Now, test whether your process logic allows users to transfer control
to other functions. According to your application design, for example, you can
transfer to function MODDEP in either of the following ways:

■ You can press the control key ([PF5]) associated with MODDEP.

Chapter 12. Adding Process Logic to a Dialog 12-45

12.5 Executing the application

■ You can enter the associated response name (MOD) in the map's response field
and press [Enter].

When you request transfer to MODDEP:

1. The runtime system stores the name (MOD) of the specified response in system-
supplied element AGR-CURRENT-RESPONSE.

2. The runtime system executes process module XXXDADD-RESPONSE for the
dialog, whether you pressed [Enter] or [PF5] to request transfer.

If you haven't already, transfer to MODDEP:

RESPONSE: mod

 [Enter]

Since you didn't enter a department record along with the response name, control
transferred to the indicated function. This processing was handled by the following
conditional command at the beginning of process module XXXDADD-RESPONSE:

IF AGR-CURRENT-RESPONSE NE SPACES �-- You entered a valid response

AND DEPT-ID-?415 NOT CHANGED �-- and didn't enter a new department;

THEN

EXECUTE NEXT FUNCTION. �-- therefore, control transferred.

How components are executed: The following diagram shows how components
for dialog XXXDADD are executed at runtime when you request transfer to another
application function. Dialog XXXDADD has a response process associated with
[Enter]. No response process is associated with [PF5], the control key defined for the
MOD response.

It is unnecessary to test function MODDEP at this time since you have not yet defined
any process logic for the associated dialog. You can exit from the Department appli-
cation by specifying the EXIT response in the RESPONSE field:

 RESPONSE: exit

 [Enter]

12-46 CA-ADS User Guide

12.6 Summary

Chapter 12. Adding Process Logic to a Dialog 12-47

12.6 Summary

 12.6 Summary

In this chapter, you enhanced dialog XXXDADD so that it performs all operations nec-
essary for final production use. You added processing logic to the dialog by per-
forming the following steps:

1. You defined two process modules by using the IDD menu facility:

■ Process module XXXDADD-PREMAP displays the dialog's map with a
message for the user.

■ Process module XXXDADD-RESPONSE evaluates end-user input and stores
department information in the database.

2. You added the process modules to dialog XXXDADD by using ADSC:

■ As a premap process, process module XXXDADD-PREMAP will be exe-
cuted whenever dialog XXXDADD begins execution.

■ As a response process associated with [Enter],R process module
XXXDADD-RESPONSE will be executed whenever the user presses [Enter]
input data on the map for dialog XXXDADD.

3. You executed the Department application to see how the process modules affect
execution of dialog XXXDADD:

■ You added new departments, one at a time, by entering department informa-
tion on the dialog's map.

■ You transferred to function MODDEP when you were finished using
ADDDEP to add new departments.

Both developers and users can execute a dialog to test its process logic. Based on
tests, developers and users often suggest modifications to process logic.

For example, after testing a fully developed dialog, users might find it confusing that
the current screen is redisplayed if it contains input errors when the user enters BACK
or EXIT. As an application developer, you might modify the application so that
BACK and EXIT exit the user unconditionally from a dialog. To do this, you would
use ADSA to modify BACK and EXIT, making the associated functions immediately
executable.

As another example, users testing dialog XXXDADD might request that, after a new
department is successfully added, the screen be redisplayed without the department's
information. This modification would make it more obvious that the redisplayed
screen can be used to add another department.

In the next chapter, you will modify process module XXXDADD-RESPONSE so that it
redisplays an initialized screen after a new department is added to the database.

12-48 CA-ADS User Guide

Chapter 13. Modifying Process Logic in a Dialog

13.1 Introduction . 13-3
13.2 Overview . 13-4
13.3 Modifying process modules using IDD 13-5

13.3.1 Step 1: Retrieve the process module definition 13-5
13.3.2 Step 2: Modify source statements 13-6

13.4 Updating modified process modules in dialogs using ADSC 13-10
13.4.1 Step 1: Retrieve and check out the dialog 13-10
13.4.2 Step 2: Recompile the dialog . 13-12
13.4.3 Execute the application . 13-13

13.5 Summary . 13-15

Chapter 13. Modifying Process Logic in a Dialog 13-1

13-2 CA-ADS User Guide

13.1 Introduction

 13.1 Introduction

In the previous chapter, you defined a premap and a response process for dialog
XXXDADD. You then executed the Department application to see how these proc-
esses affect dialog XXXDADD at runtime.

Based on runtime tests, it may be necessary to modify a dialog's premap or response
process. This chapter provides instructions for modifying process module
XXXDADD-RESPONSE, which you defined in the previous chapter. This chapter
includes:

■ An overview of modifying process logic

■ Steps for modifying process modules

■ Steps for updating modified process modules in dialogs

■ A summary of what you've accomplished in this chapter

Chapter 13. Modifying Process Logic in a Dialog 13-3

13.2 Overview

 13.2 Overview

You can modify a dialog's premap or response process at any time in an application's
life cycle. For example, assume that users who test out dialog XXXDADD ask you to
change processing so that successfully added department data is not redisplayed to the
user. To accomplish this change, you need to modify process module
XXXDADD-RESPONSE, which evaluates, stores, and redisplays department data input
by users.

Initializing the map: To initialize map XXXMAP after new department data is
added to the database, you will add an INITIALIZE command to process
XXXDADD-RESPONSE. The modified process module is shown below.

READY USAGE-MODE UPDATE.

IF AGR-CURRENT-RESPONSE NE SPACES

AND FIELD DEPT-ID-?41? NOT CHANGED

THEN

EXECUTE NEXT FUNCTION.

OBTAIN CALC DEPARTMENT.

IF DB-REC-NOT-FOUND

THEN DO.

 STORE DEPARTMENT.

INITIALIZE (DEPARTMENT). �--- This command initializes the

DISPLAY MSG TEXT DEPARTMENT record buffer after the values

'DEPARTMENT ADDED'. in the buffer are stored in the database.

END.

DISPLAY MSG TEXT

'TRY AGAIN, OR SELECT: MOD, BACK, OR EXIT'.

When you modify process module XXXDADD-RESPONSE in this chapter, you will:

1. Modify source commands for the process module by using the IDD menu
facility. You used the IDD menu facility in Chapter 12, “Adding Process Logic
to a Dialog” on page 12-1, to define process module XXXDADD-RESPONSE.

2. Update the modified process module in dialogs that use the process by using
the CA-ADS dialog compiler (ADSC). In this chapter, you will use ADSC to
update modified process module XXXDADD-RESPONSE in dialog XXXDADD.

Steps for modifying a process module and updating the modified process module in a
dialog are presented below.

13-4 CA-ADS User Guide

13.3 Modifying process modules using IDD

13.3 Modifying process modules using IDD

You can use IDD menu facility screens to modify a process module. In this chapter,
you will modify process module XXXDADD-RESPONSE by performing the following
steps:

1. Retrieve the process module definition.

2. Modify process module source statements.

These steps are discussed below.

13.3.1 Step 1: Retrieve the process module definition

In order to retrieve a process module, you must first invoke the IDD menu facility by
using its task code (for example, IDDMT). For example, when using CA-IDMS/DC,
you invoke the IDD menu facility as shown:

ENTER NEXT TASK CODE:

iddmt
 [Enter]

After you invoke the IDD menu facility, you may need to provide signon information.

For more information on invoking and signing on to the IDD menu facility, see 12.3.1,
“Step 1: Invoke the IDD menu facility” on page 12-10.

You display a process module definition on the Process Entity screen. You can
transfer to this screen and request display of an existing process module at the same
time. To do this, enter the identifier for the screen (PROC) in the command area of an
IDD menu facility screen, followed by the name of the process module.

Displaying a process module definition: For example, you can display process
module XXXDADD-RESPONSE from the Master Selection screen by specifying
PROC and the process module name in the command area.

R S
COMPUTER ASSOCIATES INTERNATIONAL CAGJF?

IDD REL 15.? CCC MASTER SELECTION CCC TOP

 -> proc xxxdadd-response

DICTIONARY NAME...: DEMO NODE NAME..:

 USER NAME.........:

 PASSWORD..........:

USAGE MODE........: X UPDATE _ RETRIEVAL

PFKEY SIMULATION..: X OFF _ ON

W X

The process module definition is displayed.

Chapter 13. Modifying Process Logic in a Dialog 13-5

13.3 Modifying process modules using IDD

Process Entity screen

R S
IDD REL 15.? CCC PROCESS ENTITY CCC PROC

 ->

 DICT=DEMO

 X DISPLAY PROCESS NAME....: XXXDADD-RESPONSE

 _ MODIFY

 _ ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

 DESCRIPTION.....:

W X

After you press [Enter], IDD displays basic information about the specified process
module on the Process Entity screen, along with a message like:

PROCESS 'XXXDADD-RESPONSE' VERSION 1 DISPLAYED

You can make modifications to specifications on the Process Entity screen, if neces-
sary, and then press [Enter] to store the modified information.

13.3.2 Step 2: Modify source statements

You defined process module XXXDADD-RESPONSE in Chapter 12, “Adding Process
Logic to a Dialog” on page 12-1. In this step, you will modify source commands in
the process module so that the dialog's screen is initialized for redisplay after the user
inputs a new department record.

To modify source commands for a process module, you use the Process Source
screen. You can display the Process Source screen for process module
XXXDADD-RESPONSE as shown.

Displaying the Process Source screen: Type the screen identifier (SRCE) in
the command area.

-> srce
 [Enter]

The Process Source screen is displayed.

13-6 CA-ADS User Guide

13.3 Modifying process modules using IDD

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> PAGE 1 LINE 1 1/17

PROCESS 'XXXDADD-RESPONSE' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

READY USAGE-MODE UPDATE.

IF AGR-CURRENT-RESPONSE NE SPACES

AND FIELD DEPT-ID-?41? NOT CHANGED

THEN

EXECUTE NEXT FUNCTION.

OBTAIN CALC DEPARTMENT.

IF DB-REC-NOT-FOUND

THEN DO.

 STORE DEPARTMENT.

DISPLAY MSG TEXT

 'DEPARTMENT ADDED'.

END.

DISPLAY MSG TEXT

'TRY AGAIN, OR SELECT: MOD, BACK, OR EXIT'.

W X

Modifying the process module: To modify process module
XXXDADD-RESPONSE, you need to insert an INITIALIZE RECORDS command in
the source commands for the process module:

1. Place the cursor on the line after which new statements are to be added.

2. Press the control key that inserts new lines on IDD screens (a different control key
may be defined at your site).

Chapter 13. Modifying Process Logic in a Dialog 13-7

13.3 Modifying process modules using IDD

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> PAGE 1 LINE 1 1/17

PROCESS 'XXXDADD-RESPONSE' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

READY USAGE-MODE UPDATE.

IF AGR-CURRENT-RESPONSE NE SPACES

AND FIELD DEPT-ID-?41? NOT CHANGED

THEN

EXECUTE NEXT FUNCTION.

OBTAIN CALC DEPARTMENT.

IF DB-REC-NOT-FOUND

THEN DO.

 STORE DEPARTMENT.

DISPLAY MSG TEXT

 'DEPARTMENT ADDED'.

END.

DISPLAY MSG TEXT

'TRY AGAIN, OR SELECT: MOD, BACK, OR EXIT'.

W X

Add the INITIALIZE statement and press the control key that applies changed or
inserted lines to IDD screens (a different key may be defined at your site).

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> INSERTING NEW DATA LINES

PROCESS 'XXXDADD-RESPONSE' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

 STORE DEPARTMENT.

 initialize (department).

W X

The updated process statements are displayed.

Press [Enter] to store the updated process module in the data dictionary:

13-8 CA-ADS User Guide

13.3 Modifying process modules using IDD

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> PAGE 1 LINE 1 1/18

PROCESS 'XXXDADD-RESPONSE' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

READY USAGE-MODE UPDATE.

IF AGR-CURRENT-RESPONSE NE SPACES

AND FIELD DEPT-ID-?41? NOT CHANGED

THEN

EXECUTE NEXT FUNCTION.

OBTAIN CALC DEPARTMENT.

IF DB-REC-NOT-FOUND

THEN DO.

 STORE DEPARTMENT.

 INITIALIZE (DEPARTMENT).

DISPLAY MSG TEXT

 'DEPARTMENT ADDED'.

END.

DISPLAY MSG TEXT

'TRY AGAIN, OR SELECT: MOD, BACK, OR EXIT'.

W X

When you press [Enter], IDD updates the process module in the data dictionary.
Then, the Process Source screen displays a message like:

PROCESS 'XXXDADD-RESPONSE' VERSION 1 MODIFIED

>> For more information on inserting lines in a process module, see CA-IDMS Online
Compiler Text Editor.

Exit from IDD: After you successfully modify process module
XXXDADD-RESPONSE, you can exit from IDD. In this sample session, you will
transfer directly from IDD to ADSC to update dialog XXXDADD. To do this, use the
SWITCH command, followed by the task code for ADSC.

You enter the SWITCH command in the command area of any IDD menu facility
screen:

-> switch adsct
 [Enter]

After you exit from IDD, you can use ADSC to update the modified process module
in any dialog that uses it.

Chapter 13. Modifying Process Logic in a Dialog 13-9

13.4 Updating modified process modules in dialogs using ADSC

13.4 Updating modified process modules in dialogs using
ADSC

In the above step, you used the IDD menu facility to modify process module
XXXDADD-RESPONSE. Now, you will recompile dialog XXXDADD, which uses this
process module. When you recompile the dialog, ADSC compiles the modified source
statements for the process module.

You will perform the following steps:

1. Retrieve and check out the dialog to be updated.

2. Recompile the dialog.

After you recompile the dialog and exit from ADSC, you can execute the application
to test the modified dialog.

13.4.1 Step 1: Retrieve and check out the dialog

In order to retrieve a dialog definition, you must be using ADSC.

If you did not transfer directly to ADSC earlier in this chapter when you exited from
IDD, you need to invoke ADSC by using the task code (for example, ADSCT) for
ADSC. For more information on invoking ADSC, see 9.3.1, “Step 1: Invoke ADSC”
on page 9-8.

ADSC begins by displaying the Main Menu screen. You use the Main Menu screen
to retrieve a dialog definition for update.

Retrieving the dialog: For example, you can retrieve dialog XXXDADD:

13-10 CA-ADS User Guide

13.4 Updating modified process modules in dialogs using ADSC

R S
Add Modify Compile Delete Display Switch

 .___.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

Dialog name xxxdadd
Dialog version 1
Dictionary name demo
Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Checking out an application: To check the application out for modification, posi-
tion the cursor on the Modify item on the action bar and press [Enter]. You can
position the cursor on Modify by:

■ Pressing [PF10] to move to the action bar and then tabbing to Modify and
pressing [Enter]

■ Tabbing to Modify and pressing [Enter]

■ Typing modify on the command line and pressing [Enter]

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Checkout Online Dialog Compiler

 2. Release

3. List Checkouts ssociates International, Inc.

 F3=Exit

Dialog name XXXDADD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Chapter 13. Modifying Process Logic in a Dialog 13-11

13.4 Updating modified process modules in dialogs using ADSC

Press [Enter] to check the dialog out.

Note: If the dialog has been checked out to another developer and has not been either
compiled or released by that developer, you will not be able to check it out.
The other developer must release the dialog.

After you press [Enter] to retrieve the dialog, ADSC displays basic information about
dialog XXXDADD on the Main Menu screen along with the following message:

NO ERRORS DETECTED

For more information on retrieving dialogs, see 11.10, “Step 1: Retrieve dialog
XXXDADD” on page 11-22.

After you successfully check out XXXDADD, you can update the modified process
module in the dialog.

13.4.2 Step 2: Recompile the dialog

Earlier in this chapter, you modified source statements for process module
XXXDADD-RESPONSE. In order to include the modified process module in dialog
XXXDADD, you must recompile the dialog. When you recompile the dialog, the mod-
ified source module is compiled. If the compilation is successful, the compiled
process module is included in the dialog load module.

To recompile dialog XXXDADD, select the Compile activity from the action bar on
the Main Menu of the dialog compiler.

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile log Compiler

2. Display messages

------------------------- nternational, Inc.

 F3=Exit

Dialog name XXXDADD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

After you press [Enter], ADSC displays either:

13-12 CA-ADS User Guide

13.4 Updating modified process modules in dialogs using ADSC

■ A confirming message when process modules contain no errors and the dialog
load module has been successfully recompiled.

■ An error message when errors in a process module prevent ADSC from success-
fully recompiling the dialog.

In this case, you correct errors in the process module as described in 12.4.6,
“Correct errors in process modules” on page 12-34.

After you successfully recompile the dialog, you can exit from ADSC by pressing
[PF3].

13.4.3 Execute the application

You can now execute the Department application to see how adding an INITIALIZE
RECORDS command to process module XXXDADD-RESPONSE affects dialog
XXXDADD at runtime.

You can invoke the Department application from DC/UCF by entering the task code
(for example, XXXDEPT) for the application. For example, when using
CA-IDMS/DC, you invoke the Department application as shown:

ENTER NEXT TASK CODE:

xxxdept

 [Enter]

For more information on invoking the application, see 9.4, “Instructions for executing
the application” on page 9-17.

According to your application design, ADDDEP is the only function that executes
dialog XXXDADD.

The ADDDEP function allows you to add new department information. When you
used the ADDDEP function to add sample departments in 12.5, “Executing the
application” on page 12-42, your sample data was redisplayed to you after you added
the data to the application database by pressing [Enter].

Entering sample information: Display ADDDEP and then try adding a sample
department now that you have modified process module XXXDADD-RESPONSE.

Note: Enter different department data than shown here.

Chapter 13. Modifying Process Logic in a Dialog 13-13

13.4 Updating modified process modules in dialogs using ADSC

R S

 FUNCTION: ADDDEP

 DATE....: 1?/3?/99

 DEPARTMENT INFORMATION

DEPARTMENT ID: 1!98
NAME: sample department
HEAD ID ..: 1!98

 RESPONSE:

W X

Screen is redisplayed: An initialized screen is displayed after you add new
department data.

R S

 FUNCTION: ADDDEP

 DATE....: 1?/3?/99

 DEPARTMENT INFORMATION

DEPARTMENT ID:

 NAME:

HEAD ID ..:

 RESPONSE:

 DEPARTMENT ADDED

W X

When you are finished testing the ADDDEP function, you can exit from the Depart-
ment application by entering the EXIT response in the screen's RESPONSE field.

13-14 CA-ADS User Guide

13.5 Summary

 13.5 Summary

In this and previous chapters, you developed dialog XXXDADD to add new depart-
ments to the database for the Department application by performing the following
steps:

1. You defined dialog XXXDADD as a skeleton dialog for the prototype Depart-
ment application in Chapter 9, “Defining Dialogs Using ADSC” on page 9-1 by
adding map XXXMAP to the dialog.

2. You enhanced the dialog to full production capability in Chapter 12, “Adding
Process Logic to a Dialog” on page 12-1, by adding a subschema, premap
process, and response process to the dialog.

3. You completed the dialog in this chapter by modifying the dialog's response
process based on end-user testing of the dialog.

Now that you have completed dialog XXXDADD, you can proceed to enhance dialog
XXXDUPD by defining a work record and modules of process code for the dialog.

Chapter 13. Modifying Process Logic in a Dialog 13-15

13-16 CA-ADS User Guide

Chapter 14. Defining Work Records Using IDD

14.1 Introduction . 14-3
14.2 Overview . 14-4
14.3 Instructions . 14-6

14.3.1 Step 1: Define an element . 14-6
14.3.2 Step 2: Define a work record . 14-9
14.3.3 Step 3: Specifying basic information 14-9
14.3.4 Adding elements . 14-11

14.4 Summary . 14-14

Chapter 14. Defining Work Records Using IDD 14-1

14-2 CA-ADS User Guide

14.1 Introduction

 14.1 Introduction

In previous chapters, you used the IDD menu facility to define and modify process
modules for use in dialog XXXDADD. You also can use IDD to define work records
for use by dialogs.

Instructions for defining work records are provided in this chapter. The sample work
record defined in this chapter will be used by process modules that you will define for
dialog XXXDUPD in Chapter 15, “Completing the Department Application” on
page 15-1. This chapter includes:

■ An overview of defining work records for CA-ADS applications

■ Instructions for defining work records

■ A summary of what you've accomplished in this chapter

Note: At some sites, all records and elements are defined by database administrators
(DBAs). Even if this is the case at your site, go ahead and read this chapter to
find out more about records in the CA-ADS environment.

Chapter 14. Defining Work Records Using IDD 14-3

14.2 Overview

 14.2 Overview

Each item of data used and stored by your application must be defined as an element
in the data dictionary. Most elements describe database values. For example,
DEPT-ID-0410, DEPT-NAME-0410, and DEPT-HEAD-ID-0410 are elements that
store information about a department in the database.

Elements are grouped together in records. For example, elements DEPT-ID-0410,
DEPT-NAME-0410, and DEPT-HEAD-ID-0410 are grouped together in the DEPART-
MENT record because they all store information about a department. The DEPART-
MENT record is called a database record because it describes information in the
database. Database records are defined by using the schema compiler. (Alternatively,
in an SQL environment, tables are defined by using SQL.) DBAs usually are respon-
sible for defining and maintaining database records.

You also can define work records for an application. Work records describe tempo-
rary storage for a dialog. Elements in a work record describe data that is not stored in
the application database. You define work records by using the IDD menu facility.

Note: Work records are sometimes referred to as IDD records to differentiate them
from schema-defined database records.

Database and work records must be associated with each dialog that uses them.

Associating database records with a dialog: You associate database records
with a dialog when you add a subschema containing the records to the dialog.

For example, subschema EMPSS01 contains the DEPARTMENT record. When you
added subschema EMPSS01 to dialog XXXDADD in 12.4.3, “Step 3: Add a
subschema” on page 12-24, you made the DEPARTMENT record available to that
dialog.

Associating work records with a dialog: You associate work records with a
dialog either by naming the record when you define the dialog's map or when you
define the dialog itself, depending on how the work record is to be used:

■ If the work record is to be displayed on the dialog's map (and optionally used
in the dialog's process logic), you add the record with the map.

Work records named on a map are automatically available to dialogs that use the
map.

■ If the work record is to be used only by process module commands (and not
displayed on the dialog's map), you add the work record directly to the dialog.

Note that both database and work records that define data to be displayed on a map
must be directly associated with the map. Because of this, records on a map are often
referred to collectively as map records.

Note: Work records associated with a map are automatically available to dialogs
that use the map. For database records associated with a map, you still must

14-4 CA-ADS User Guide

14.2 Overview

give the dialog a subschema to make the records available to the dialog. This
is because information about the database itself is defined in the subschema,
and is required by dialogs that access database records.

In this chapter, you will define a work record for dialog XXXDUPD. Data for the
record will be used internally by process modules but will not be displayed to the end
user. Therefore, you will associate this record directly with dialog XXXDUPD (rather
than with map XXXMAP) when you add process logic to the dialog in Chapter 15,
“Completing the Department Application” on page 15-1.

Chapter 14. Defining Work Records Using IDD 14-5

14.3 Instructions

 14.3 Instructions

Work records typically are small and contain only elements needed by a particular
dialog or process module. This reduces the amount of storage reserved for a given
dialog during execution. For example, in this chapter you will define a one-element
work record for dialog XXXDUPD.

You will use the IDD menu facility to define:

■ Element XXX-WK-FIRST-TIME — An element for use in response process
XXXDUPD-ENTER.

Element XXX-WK-FIRST-TIME stores either Y (yes) or N (no) to indicate
whether response process XXXDUPD-ENTER is processing a department record
for the first time, or not. Different commands in process module
XXXDUPD-ENTER are performed, based on the value in element
XXX-WK-FIRST-TIME.

■ Record XXX-WK-RECORD — A work record for dialog XXXDUPD. Record
XXX-WK-RECORD contains element XXX-WK-FIRST-TIME.

Additional elements can be added to a work record at any time. For example, if a
response process for dialog XXXDUPD is modified so that a counter is required, you
can add an element (for example, XXX-WK-COUNTER) to record XXX-WK-RECORD
to store the counter value.

To define a work record in this chapter, you will:

1. Define element XXX-WK-FIRST-TIME.

2. Define work record XXX-WK-RECORD.

These steps are presented below. If you need additional information at any time about
the use of IDD, see B.6, “Using the IDD Menu Facility” on page B-31.

14.3.1 Step 1: Define an element

Each element that you add to the data dictionary describes a unit of data that can be
used in an application.

In order to define an element, you must invoke and sign on to the IDD menu facility.
For example, when using IDMS-DC, you invoke the IDD menu facility as shown:

ENTER NEXT TASK CODE:

iddmt
 [Enter]

For more information on invoking and signing on to the IDD menu facility, see 12.3.1,
“Step 1: Invoke the IDD menu facility” on page 12-10.

You use the Element Entity screen to define elements in the data dictionary. You
display the Element Entity screen as shown:

14-6 CA-ADS User Guide

14.3 Instructions

-> elem
 [Enter]

Element Entity screen

R S
IDD REL 15.? CCC ELEMENT ENTITY CCC ELEM

 ->

 DICT=DEMO

 X DISPLAY ELEMENT NAME....:

 _ MODIFY

 _ ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

 DESCRIPTION:

 PICTURE....: NO SYNC: X SYNC: _

 USAGE......: X DISPLAY _ CONDITION NAME (LEVEL 88)

_ COMP/COMP-4 (BINARY) _ COMP-3 (PACKED DECIMAL)

_ COMP-1 (SHORT FLOATING) _ COMP-2 (LONG FLOATING)

 _ BIT _ POINTER

 _ ELMX = ELEMENT EXTENSION <PF9> _ SUBE = SUBORD ELEMENTS <PF11>

 _ REGN = USER REGISTRATION <PF2> _ PUBL = PUBLIC ACCESS <PF3>

 _ CLAT = CLASS/ATTRIBUTES <PF4> _ RKEY = RELATIONAL KEYS <PF5>

 _ COMM = COMMENTS <PF6> _ COML = COMMENT KEY LIST <PF7>

 _ HIST = HISTORY <PF8> _ COPY = SAME AS/COPY FROM

 _ XREF = CROSS REFERENCE <PF1?> _ HELP = HELP <PF1>

W X

Screen prompts: When you use the Element Entity screen to define an element,
you typically enter specifications for the following Element Entity screen prompts:

■ ELEMENT NAME — You must supply an element name. The name you
specify must be unique.

■ DISPLAY — You deselect the DISPLAY action when you intend to add a new
element.

To do this, type a blank over the X displayed to the left of the action.

■ ADD — You must select the ADD action to specify that you are defining a new
element.

■ DESCRIPTION — You optionally specify a brief description of the element.

■ PICTURE — You must specify the storage layout (that is, picture) for the
element after the PICTURE prompt. A picture specifies:

– The type of data that can be stored for the element:

— For alphanumeric data, enter an X.

— For alphabetic data, enter an A.

— For numeric data, enter a 9.

– The number of characters that can be stored for the element.

By default, an element can store single-character values.

Chapter 14. Defining Work Records Using IDD 14-7

14.3 Instructions

You optionally enable an element to store larger values by specifying, in
parentheses, the maximum number of characters to be stored by the element.
For example, a picture of X(6) enables an element to store values that contain
up to six alphanumeric characters.

For example, the element that you define in this chapter will be used to store
the single-character value Y or N.

■ USAGE — You optionally specify the storage format for data after the USAGE
prompt.

For element XXX-WK-FIRST-TIME, you will retain the default usage, DISPLAY,
since DISPLAY usage is appropriate for the flag values (Y and N) stored for the
element.

For more information on DISPLAY and other USAGE specifications, see the IDD
DDDL Reference.

Defining an element: To define XXX-WK-FIRST-TIME as an element that stores
single-character alphanumeric values, you use the Element Entity screen to:

■ Type the name of the element. You can use your initials instead of XXX

■ Deselect the DISPLAY action and select the ADD action.

■ Type an optional description for the element.

■ Specify a picture of X. This enables the element to store single-character alphanu-
meric flag values.

R S
IDD REL 15.? CCC ELEMENT ENTITY CCC ELEM

 ->

 DICT=DEMO

 DISPLAY ELEMENT NAME....: xxx-wk-first-time
 _ MODIFY

 x ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

 DESCRIPTION: passes flag value for dialog xxxdupd

 PICTURE....: x NO SYNC: X SYNC: _

 USAGE......: X DISPLAY _ CONDITION NAME (LEVEL 88)

_ COMP/COMP-4 (BINARY) _ COMP-3 (PACKED DECIMAL)

_ COMP-1 (SHORT FLOATING) _ COMP-2 (LONG FLOATING)

 _ BIT _ POINTER

 _ ELMX = ELEMENT EXTENSION <PF9> _ SUBE = SUBORD ELEMENTS <PF11>

 _ REGN = USER REGISTRATION <PF2> _ PUBL = PUBLIC ACCESS <PF3>

 _ CLAT = CLASS/ATTRIBUTES <PF4> _ RKEY = RELATIONAL KEYS <PF5>

 _ COMM = COMMENTS <PF6> _ COML = COMMENT KEY LIST <PF7>

 _ HIST = HISTORY <PF8> _ COPY = SAME AS/COPY FROM

 _ XREF = CROSS REFERENCE <PF1?> _ HELP = HELP <PF1>

W X

After you press [Enter], the Element Entity screen displays a message to indicate
whether the element definition has been added to the data dictionary:

14-8 CA-ADS User Guide

14.3 Instructions

■ If you successfully defined a new element, IDD displays a message like:

ELEMENT 'XXX-WK-FIRST-TIME' VERSION 1 ADDED

■ If the element cannot be added to the data dictionary, IDD displays a different
message.

Read the message to determine the problem. You can type over any errors and
press [Enter] again.

After you successfully add element XXX-WK-FIRST-TIME to the data dictionary, you
can define work record XXX-WK-RECORD.

14.3.2 Step 2: Define a work record

You define a record to describe a collection of one or more existing elements. To
define a work record to the data dictionary, you perform the following steps using the
IDD menu facility:

1. You specify basic information for the record by using the Record Entity screen.

2. You add one or more existing elements to the record by using the Record
Element screen. In this chapter, you will use this screen to add element
XXX-WK-FIRST-TIME to record XXX-WK-RECORD.

The way you specify basic information for a work record and add elements to the
record are shown below.

14.3.3 Step 3: Specifying basic information

You use the Record Entity screen to define a work record. You display the Record
Entity screen as shown:

-> recd
 [Enter]

Record Entity screen: The Record Entity screen is displayed.

Chapter 14. Defining Work Records Using IDD 14-9

14.3 Instructions

R S
IDD REL 15.? CCC RECORD ENTITY CCC RECD

 ->

 DICT=DEMO

 X DISPLAY RECORD NAME.....:

 _ MODIFY

 _ ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

 DESCRIPTION.....:

 RECORD LENGTH...:

 _ RELM = RECORD ELEMENTS <PF9> _ COBL = COBOL ELEMENTS <PF11>

 _ RELL = REC ELEMENT LIST <PF1?> _ RECX = RECORD EXTENSION

 _ REGN = USER REGISTRATION <PF2> _ PUBL = PUBLIC ACCESS <PF3>

 _ CLAT = CLASS/ATTRIBUTES <PF4> _ RKEY = RELATIONAL KEYS <PF5>

 _ COMM = COMMENTS <PF6> _ COML = COMMENT KEY LIST <PF7>

 _ HIST = HISTORY <PF8> _ COPY = COPY FROM/SAME AS

 _ XREF = CROSS REFERENCE _ HELP = HELP <PF1>

W X

Screen prompts: When adding a new work record, you usually specify information
for the following Record Entity screen prompts:

■ RECORD NAME — You must supply a record name. The name that you
specify must be unique.

■ DISPLAY — You deselect the DISPLAY action when you intend to add a new
record.

■ ADD — You select the ADD action to specify that you are defining a new record.

■ DESCRIPTION — You optionally provide a brief description of the record.

To specify basic information for record XXX-WK-RECORD. You use the Record
Entity screen and enter the indicated specifications:

■ Type the name of the record You can use your initials instead of XXX

■ Deselect the DISPLAY action and select the ADD action.

■ Type an optional description for the record

14-10 CA-ADS User Guide

14.3 Instructions

R S
IDD REL 15.? CCC RECORD ENTITY CCC RECD

 ->

 DICT=DEMO

 DISPLAY RECORD NAME.....: xxx-wk-record

 _ MODIFY

 x ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

DESCRIPTION.....: work record for dialog xxxdupd

 RECORD LENGTH...:

 _ RELM = RECORD ELEMENTS <PF9> _ COBL = COBOL ELEMENTS <PF11>

 _ RELL = REC ELEMENT LIST <PF1?> _ RECX = RECORD EXTENSION

 _ REGN = USER REGISTRATION <PF2> _ PUBL = PUBLIC ACCESS <PF3>

 _ CLAT = CLASS/ATTRIBUTES <PF4> _ RKEY = RELATIONAL KEYS <PF5>

 _ COMM = COMMENTS <PF6> _ COML = COMMENT KEY LIST <PF7>

 _ HIST = HISTORY <PF8> _ COPY = COPY FROM/SAME AS

 _ XREF = CROSS REFERENCE _ HELP = HELP <PF1>

W X

After you press [Enter], the Record Entity screen displays a message to inform you
whether the record definition has been stored in the data dictionary:

■ If you successfully defined a new record, IDD displays a message like:

RECORD 'XXX-WK-RECORD' VERSION 1 ADDED

■ If the record cannot be added to the data dictionary, IDD displays a different
message.

In this case, read the message to determine the problem. You can change specifi-
cations on the Record Entity screen and press [Enter] again.

After you successfully specify basic information for a record, you can add elements to
the record by using the Record Element screen.

 14.3.4 Adding elements

You defined element XXX-WK-FIRST-TIME in the data dictionary in 14.3.1, “Step 1:
Define an element” on page 14-6 earlier in this chapter. In this step, you will add
element XXX-WK-FIRST-TIME to record XXX-WK-RECORD. Elements used in
records are referred to as record elements.

You use the IDD Record Element screen to add elements to work records:

-> relm
 [Enter]

RELM identifies the Record Element screen.

The Record Element screen is displayed.

Chapter 14. Defining Work Records Using IDD 14-11

14.3 Instructions

R S
IDD REL 15.? CCC RECORD ELEMENT CCC RELM

 -> NO DATA LINES CURRENTLY EXIST

RECORD 'XXX-WK-RECORD' VERSION 1

 _ REMOVE RECORD ELEMENT NAME.....:

 _ REPLACE VERSION NUMBER..........: _ HIGHEST _ LOWEST

 LINE NUMBER.............: LEVEL NUMBER..:

 REDEFINES...........:

 OCCURS..............: TO TIMES

 DEPENDING ON........:

PICTURE.............: _ NO SYNC _ SYNC

USAGE...............: _ DISPLAY _ CONDITION NAME _ BIT _ POINTER

 _ COMP _ COMP-1 _ COMP-2 _ COMP-3

 VALUE(S):

 THRU

 THRU

 THRU

 _ EXCLUDE VALUES

ELEMENT SYNONYM NAME.................:

FOR RECORD SYNONYM...................:

 VERSION NUMBER...................: _ HIGHEST _ LOWEST

W X

Screen prompts: When you add an element to a record, you typically specify the
following information:

■ Element name — You must name an existing element after the RECORD
ELEMENT NAME prompt.

■ Additional specifications — You optionally can redefine how the element is used
in the current record by using prompts on the Record Element screen. For
example, you could override the PICTURE or USAGE specifications you gave to
element XXX-WK-FIRST-TIME in 14.3.1, “Step 1: Define an element” on
page 14-6 earlier in this chapter.

You most often override specifications for an element when the element is used in
different ways by several work records. Specifications made on the Record
Element screen do not alter the actual element definition in the data dictionary.
For more information on Record Element screen specifications, see the IDD
DDDL Reference.

You will not change any values when you add element XXX-WK-FIRST-TIME to
record XXX-WK-RECORD in this chapter.

You use the Record Element screen to type in the name of the element that you
defined earlier in this chapter.

14-12 CA-ADS User Guide

14.3 Instructions

R S
IDD REL 15.? CCC RECORD ELEMENT CCC RELM

 -> NO DATA LINES CURRENTLY EXIST

RECORD 'XXX-WK-RECORD' VERSION 1

 _ REMOVE RECORD ELEMENT NAME.....: xxx-wk-first-time

 _ REPLACE VERSION NUMBER..........: _ HIGHEST _ LOWEST

 LINE NUMBER.............: LEVEL NUMBER..:

 REDEFINES...........:

 OCCURS..............: TO TIMES

 DEPENDING ON........:

PICTURE.............: _ NO SYNC _ SYNC

USAGE...............: _ DISPLAY _ CONDITION NAME _ BIT _ POINTER

 _ COMP _ COMP-1 _ COMP-2 _ COMP-3

 VALUE(S):

 THRU

 THRU

 THRU

 _ EXCLUDE VALUES

ELEMENT SYNONYM NAME.................:

FOR RECORD SYNONYM...................:

 VERSION NUMBER...................: _ HIGHEST _ LOWEST

W X

After you press [Enter], the Record Element screen displays a message to indicate
whether the element has been added to the work record in the data dictionary:

■ If the element is successfully added to the record, IDD displays a message like:

RECORD 'XXX-WK-RECORD' VERSION 1 MODIFIED

■ If the element cannot be added to the record, IDD displays a different message
than the one shown above.

In this case, read the message to determine the problem. You can type over any
errors and press [Enter] again.

After you finish defining work elements and records, you can exit from IDD. In this
sample session, exiting from IDD is optional because you will use the IDD menu
facility again in the next chapter.

If you want to exit from IDD, enter the SWITCH SUSPEND command in the
command area of any IDD menu facility screen:

-> switch suspend
 [Enter]

Chapter 14. Defining Work Records Using IDD 14-13

14.4 Summary

 14.4 Summary

You can define a work record to establish temporary storage for a dialog. Elements in
the work record describe the data to be stored.

In this chapter, you used the IDD menu facility to create a work record for use in
dialog XXXDUPD by performing the following steps:

1. You defined element XXX-WK-FIRST-TIME to store a single-character, alpha-
numeric status value. When used in dialog XXXDUPD, this element contains
either Y (yes) or N (no). This value establishes whether response process
XXXDUPD-ENTER is processing a department for the first time or not.

2. You defined record XXX-WK-RECORD to contain element
XXX-WK-FIRST-TIME.

To see how you use work records and elements in dialogs, proceed to the next chapter,
chapter 10, where you enhance dialog XXXDUPD by adding process modules and
data definitions to the dialog.

14-14 CA-ADS User Guide

Chapter 15. Completing the Department Application

15.1 Introduction . 15-3
15.2 Overview . 15-4
15.3 Defining process modules using IDD . 15-7

15.3.1 Step 1: Define process module XXXDUPD-PREMAP 15-7
15.3.2 Step 2: Define process module XXXDUPD-ENTER 15-11
15.3.3 Step 3: Define process module XXXDUPD-PA2 15-18

15.4 Completing dialog XXXDUPD using ADSC 15-21
15.4.1 Step 1: Retrieve dialog XXXDUPD 15-21
15.4.2 Step 2: Add a subschema . 15-23
15.4.3 Step 3: Define dialog options . 15-24
15.4.4 Step 4: Add a work record . 15-25
15.4.5 Step 5: Add premap and response processes 15-26
15.4.6 Step 6: Recompile the dialog . 15-28

15.5 Executing the application . 15-29
15.6 Summary . 15-36

Chapter 15. Completing the Department Application 15-1

15-2 CA-ADS User Guide

15.1 Introduction

 15.1 Introduction

When you created the prototype of the Department application, you defined skeleton
dialogs XXXDADD and XXXDUPD to be displayed by dialog functions in the applica-
tion. In previous chapters, you completed dialog XXXDADD by adding modules of
process commands for the dialog.

In this chapter, you will complete the sample Department application by adding
process logic to dialog XXXDUPD. The process modules that you define for the
dialog will allow the end user to modify and delete existing department information.

This chapter includes:

■ An overview of process modules and dialog execution

■ Steps for defining process modules

■ Steps for associating process modules with dialogs

■ Steps for executing the application

■ A summary of what you've accomplished in this manual

Chapter 15. Completing the Department Application 15-3

15.2 Overview

 15.2 Overview

The final structure of the sample Department application is shown below. Dialog
XXXDUPD is the only component in the application that requires further development.
In this chapter, you will enhance dialog XXXDUPD by writing three process modules
for the dialog. When you complete dialog XXXDUPD, you will have finished defining
the sample Department application. Dialog XXXDUPD, which is executed by func-
tions MODDEP and DELDEP, is the only component in the sample application that
requires further development.

As the diagram indicates, dialog XXXDUPD is executed by both functions MODDEP
and DELDEP. Therefore, process modules that you write for dialog XXXDUPD must
be able to both modify and delete department information in the database.

To handle all processing requirements for dialog XXXDUPD, you will define the fol-
lowing premap and response processes for the dialog:

When you add these process modules to dialog XXXDUPD, you also must enable the
process modules to access temporary storage and database information. To do this,
you will associate with the dialog any records that define temporary storage and data-
base records. You will add:

1. Work record XXX-WK-RECORD — Includes element XXX-WK-FIRST-TIME,
which stores a status value (Y or N) used by response processes in dialog
XXXDUPD.

You defined work record XXX-WK-RECORD in Chapter 14, “Defining Work
Records Using IDD” on page 14-1.

2. Subschema EMPSS01 — Includes the DEPARTMENT record, which is the data-
base record for department information.

Process module Type Function performed

XXXDUPD-PREMAP Premap Displays the dialog's map with a message
prompting the end user for the depart-
ment to be modified or deleted.

XXXDUPD-ENTER Response
(associated
with the
[Enter]
key)

Handles most modification and deletion
operations.

XXXDUPD-PA2 Response
(associated
with the
[PA2]
key)

Allows the end user to cancel the current
modification or deletion operation before
the database is updated.

15-4 CA-ADS User Guide

15.2 Overview

At run time, the dialog can access any database record in the dialog's subschema.
Database administrators (DBAs) typically define subschemas for use by dialogs.

The following diagram shows dialog XXXDUPD with all of its components. To enable
dialog XXXDUPD to perform all necessary processing, you will add a premap process,
two response processes, a work record, and a subschema to the dialog.

Cancelling a modification: To protect data in the database, your process modules
should make it easy for end users to cancel a modification or deletion operation. As
an application developer, you will do this by defining a two-stage procedure for mod-
ifying or deleting department records:

1. First, the end user specifies a department to modify or delete. When the end
user presses [Enter] to specify a department, response process XXXDUPD-ENTE is
executed. This response process accesses and displays the complete department
record.

2. Then, the end user either cancels or continues the current operation, based on
the record displayed on the screen:

■ To cancel, the end user presses [PA2].

Chapter 15. Completing the Department Application 15-5

15.2 Overview

■ To continue, the end user types any necessary modifications to the record and
presses [Enter]. This time, response process XXXDUPD-ENTER modifies or
deletes the department record in the database.

Response process XXXDUPD-ENTER performs both stages of a completed modifica-
tion or deletion operation. This is accomplished at run time by having the status value
(Y or N) in element XXX-WK-FIRST-TIME determine which stage is performed.
Commands in your process modules change the value in XXX-WK-FIRST-TIME, as
appropriate.

Instructions for defining process modules, adding the modules to a dialog, and exe-
cuting the final application are given on the following pages.

15-6 CA-ADS User Guide

15.3 Defining process modules using IDD

15.3 Defining process modules using IDD

According to your application definition, dialog XXXDUPD is executed by functions
MODDEP and DELDEP:

■ Function MODDEP executes dialog XXXDUPD to modify department records.

■ Function DELDEP executes dialog XXXDUPD to delete department records.

Process modules that you write must be able to handle both modification and deletion
operations. To accomplish this, you will include commands that:

1. Test which function (MODDEP or DELDEP) is currently in use

2. Invoke subroutines appropriate to the current function

You test which function is currently in use by querying AGR-CURRENT-FUNC-
TION, which is an element in the system-supplied
ADSO-APPLICATION-GLOBAL-RECORD. At run time,
AGR-CURRENT-FUNCTION stores the name of the current function. Your process
module can access AGR-CURRENT-FUNCTION because
ADSO-APPLICATION-GLOBAL-RECORD belongs to the dialog's map (and thus to
the dialog).

For example, the following conditional command tests the value in
AGR-CURRENT-FUNCTION:

IF AGR-CURRENT-FUNCTION EQ 'MODDEP' �-- If function MODDEP is executing

THEN the dialog,

CALL MODRTN. �-- call subroutine MODRTN to

modify the department record.

In this chapter, you will define process modules for dialog XXXDUPD. You will:

1. Define process module XXXDUPD-PREMAP.

2. Define process module XXXDUPD-ENTER.

3. Define process module XXXDUPD-PA2.

15.3.1 Step 1: Define process module XXXDUPD-PREMAP

In order to define a process module, you must be using IDD. If you did not remain
signed on to IDD at the end of the previous chapter, you should now sign on to the
IDD menu facility, as described in 12.3.1, “Step 1: Invoke the IDD menu facility” on
page 12-10.

The first process module you will define in this chapter is process module
XXXDUPD-PREMAP. Statements that you will input for the process module are
shown below. This process module will be the premap process for dialog XXXDUPD.

Chapter 15. Completing the Department Application 15-7

15.3 Defining process modules using IDD

MOVE 'Y' TO XXX-WK-FIRST-TIME. Y

IF AGR-CURRENT-FUNCTION EQ 'MODDEP' -┐

THEN │ \

DISPLAY MSG TEXT │

'MODIFY -- ENTER THE DEPARTMENT ID, OR SELECT: BACK OR EXIT'.-┘

ELSE -┐

DISPLAY MSG TEXT │ i

'DELETE -- ENTER THE DEPARTMENT ID, OR SELECT: BACK OR EXIT'.-┘

Y This statement sets the flag value in XXX-WK-FIRST-TIME to Y (YES).

\ If the MODDEP function is in use, the dialog's map is displayed with the MODIFY
message (defined here between the single quotation marks).

i If the DELDEP function is in use, the dialog's map is displayed with the DELETE
message.

Specifying basic information about the process module: You use the
Process Entity screen to specify basic information for a process module. You can
display and use the Process Entity screen as shown:

R S
COMPUTER ASSOCIATES INTERNATIONAL CAGJF?

IDD REL 15.? CCC MASTER SELECTION CCC TOP

 -> proc
SIGNON TO IDD WAS SUCCESSFUL

DICTIONARY NAME...: DEMO NODE NAME..:

W X

 [Enter]

Enter the indicated specifications:

■ Type the name of the process module. You can use your initials instead of XXX.

■ Deselect the DISPLAY action and select the ADD action.

■ Optionally type a description of the process.

15-8 CA-ADS User Guide

15.3 Defining process modules using IDD

R S
IDD REL 15.? CCC PROCESS ENTITY CCC PROC

 ->

 DICT=DEMO

 DISPLAY PROCESS NAME....: xxxdupd-premap
 _ MODIFY

 x ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

DESCRIPTION.....: display map to mod/del departments

W X

When you press [Enter], IDD redisplays the Process Entity screen with a message. If
the process module is defined successfully, the Process Entity screen displays a
message like:

PROCESS 'XXXDUPD-PREMAP' VERSION 1 ADDED

If a different message is displayed, read the message to determine the problem. You
can type over any errors, and then press [Enter] again.

After you specify basic information about a process module, you can use the Process
Source screen to enter process commands for the process module. For example, enter
process commands for process module XXXDUPD-PREMAP as shown:

-> srcs
 [Enter]

SRCE identifies the Process Source screen.

The Process Source screen is displayed.

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> NO DATA LINES CURRENTLY EXIST

PROCESS 'XXXDUPD-PREMAP' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

W X

Entering process statements: Enter source statements for the process module:

■ Enter keywords, periods, and single quotes as shown.

■ The exclamation point in any column signals the start of a comment.

■ You can types spaces to indent statements, making the process source easier to
read and debug.

Caution: Don't type any characters beyond column 72.

Chapter 15. Completing the Department Application 15-9

15.3 Defining process modules using IDD

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> NO DATA LINES CURRENTLY EXIST

PROCESS 'XXXDUPD-PREMAP' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

move 'y' to'xxx-wk-first-time.
!
if agr-current-function eq 'moddep'
then

display msg text
'modify -- enter the department id, or select: back or exit'.

!
else

display msg text
'delete -- enter the department id, or select: back or exit'.

W X

 [Enter]

The Process Source screen is redisplayed.

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> 1/1?

PROCESS 'XXXDUPD-PREMAP' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

MOVE 'Y' TO XXX-WK-FIRST-TIME

!

IF AGR-CURRENT-FUNCTION EQ 'MODDEP'

THEN

DISPLAY MSG TEXT

'MODIFY -- ENTER THE DEPARTMENT ID, OR SELECT: BACK OR EXIT'.

!

ELSE

DISPLAY MSG TEXT

'DELETE -- ENTER THE DEPARTMENT ID, OR SELECT: BACK OR EXIT'.

W X

After you press [Enter], IDD adds the process module to the data dictionary and redis-
plays the Process Source screen with a message like:

PROCESS 'XXXDUPD-PREMAP' VERSION 1 MODIFIED

After you finish using the Process Source screen for process module
XXXDUPD-PREMAP, you can proceed to define process module XXXDUPD-ENTER.

15-10 CA-ADS User Guide

15.3 Defining process modules using IDD

15.3.2 Step 2: Define process module XXXDUPD-ENTER

Now you will define process module XXXDUPD-ENTER for dialog XXXDUPD. This
process module will be executed when the end user presses [Enter].

Process XXXDUPD-ENTER allows an end user to specify a department, verify that the
correct department is specified, and then enter modification or deletion instructions by
performing the following processing:

1. When the end user first specifies the department to be processed and presses
[Enter], response process XXXDUPD-ENTER:

■ Retrieves information stored for the specified department

■ Displays the department information for verification and prompts the end user
to modify or delete the displayed record

2. When the end user presses [Enter] again, response process XXXDUPD-ENTER:

■ Modifies or deletes the department in the database

■ Displays the dialog's map to the end user with a message confirming the mod-
ification or deletion operation

To enable process module XXXDUPD-ENTER to perform the above processing, com-
mands in the process module store and evaluate a status value in element
XXX-WK-FIRST-TIME:

■ A value of Y (yes) indicates that the process module is executing for the first time
for a given department, and so must retrieve the department from the database.

Before redisplaying the screen to the end user, the response process changes the
value in element XXX-WK-FIRST-TIME from Y to N.

■ A value of N (no) indicates that the process module is executing for the second
time for the department, and so must modify or delete information stored for the
department.

After processing the department, the response process resets the value in element
XXX-WK-FIRST-TIME from N to Y.

Process module XXXDUPD-ENTER is shown below. Statements that retrieve the
specified department from the database, modify the department, and delete the depart-
ment are organized into subroutines.

READY USAGE-MODE UPDATE.

 -┐

IF AGR-CURRENT-RESPONSE NE SPACES

AND NO FIELDS CHANGED

AND XXX-WK-FIRST-TIME EQ 'Y' Y

THEN

EXECUTE NEXT FUNCTION. -┘

IF XXX-WK-FIRST-TIME EQ 'Y' -┐

THEN \

Chapter 15. Completing the Department Application 15-11

15.3 Defining process modules using IDD

 CALL FRSTRTN. -┘

IF AGR-CURRENT-FUNCTION EQ 'MODDEP' -┐

THEN

 CALL MODRTN. i

ELSE

 CALL DELRTN. -┘

DEFINE FRSTRTN. -- j

OBTAIN CALC DEPARTMENT. -- l

IF DB-REC-NOT-FOUND -┐

THEN

DISPLAY MSG TEXT m

'DEPARTMENT DOES NOT EXIST--SPECIFY A DIFFERENT DEPARTMENT'.

 -┘

ELSE DO. -┐

MOVE 'N' TO XXX-WK-FIRST-TIME. n

PROTECT FIELD DEPT-ID-?41? TEMPORARY. -┘

IF AGR-CURRENT-FUNCTION EQ 'MODDEP' -┐

 THEN

DISPLAY MSG TEXT

'MODIFY DEPARTMENT AND PRESS ENTER (PA2 TO CANCEL)'.

 o

 ELSE

DISPLAY MSG TEXT

'PRESS ENTER TO DELETE THIS DEPARTMENT (PA2 TO CANCEL)'.

 -┘

END.

DEFINE MODRTN. -- p

MODIFY DEPARTMENT. -- Yq

INITIALIZE (DEPARTMENT). -┐

MOVE 'Y' TO XXX-WK-FIRST-TIME YY

DISPLAY MSG TEXT

'DEPARTMENT MODIFIED--SPECIFY ANOTHER DEPARTMENT TO MODIFY'. -┘

DEFINE DELRTN. -- Y\

ERASE DEPARTMENT ALLOWING ('?23?'). -- Yi

MOVE 'Y' TO XXX-WK-FIRST-TIME. -- Yj

IF ERROR-STATUS EQ '?23?' -┐

THEN

DISPLAY MSG TEXT Yl

'CANNOT DELETE THIS DEPARTMENT--SPECIFY ANOTHER DEPARTMENT'.

 -┘

ELSE DO. -┐

MOVE 'Y' TO XXX-WK-FIRST-TIME.

 INITIALIZE (DEPARTMENT). Ym

15-12 CA-ADS User Guide

15.3 Defining process modules using IDD

DISPLAY MSG TEXT -┘

'DEPARTMENT DELETED--SPECIFY ANOTHER DEPARTMENT TO DELETE'.

END.

Y Transfers control to another application function when the user enters a valid appli-
cation response and doesn't try to input other information on the screen.

\ The first time this process is executed for a given department. subroutine FRSTRTN
is called.

i The next time the process is executed for the department, the appropriate subroutine
is called (MODRTN for function MODDEP or DELRTN for function DELDEP).

FRSTRTN subroutine

j Subroutine FRSTRTN begins.

l Uses the department ID supplied by the user to retrieve the department.

m If the specified department does not exist in the database, the dialog's map is redis-
played with the DEPARTMENT DOES NOT EXIST error message.

n If the department does exist, the flag in XXX-WK-FIRST-TIME is set to N (NO) and
the map field that displays department ID numbers is temporarily protected from user
input.

o The retrieved department record is displayed on the dialog's map with an appropriate
message.

MODRTN subroutine

p Subroutine MODRTN begins.

Yq The department is modified in the database based on the user's input.

YY After the department is modified, dialog buffers for DEPARTMENT data are ini-
tialized, the flag in XXX-WK-FIRST-TIME is reset to Y (YES), and the map is redis-
played with a confirming message.

DELRTN subroutine

Y\ Subroutine DELRTN begins.

Yi The department is deleted from the database. Your code tests for errors that cause
error code 0230 (see below).

Yj Resets the flag in XXXWK-FIRST-TIME to Y (YES).

Chapter 15. Completing the Department Application 15-13

15.3 Defining process modules using IDD

Yl If status code 0230 is returned, the department cannot be deleted because it owns
other records (for example, employee records). In this case, the map is redisplayed
with a message and the department is not deleted.

Ym After the department is deleted, dialog buffers are initialized and the dialog's map
is redisplayed with a confirming message.

Specifying basic information for the process module: To specify basic
information for process module XXXDUPD-ENTER, you use the IDD Process Entity
screen:

-> proc
 [Enter]

Enter the screen identifier (PROC) in the command area.

Enter the indicated specifications on the Process Entity screen. Don't forget to deselect
the DISPLAY action.

R S
IDD REL 15.? CCC PROCESS ENTITY CCC PROC

 ->

 DICT=DEMO

 DISPLAY PROCESS NAME....: xxxdupd-enter

 _ MODIFY

 x ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

DESCRIPTION.....: retrieve dept and then mod/del dept

W X

 [Enter]

Entering source statements for the process: To enter source commands for a
process module, you display and use the Process Source screen, as shown below for
process XXXDUPD-ENTER:

-> srcs
 [Enter]

SRCE identifies the Process Source screen.

The Process Source screen is displayed. Enter a full screen of source statements.
Enter keywords, periods, and quotes as shown below. Don't type characters beyond
column 72.

15-14 CA-ADS User Guide

15.3 Defining process modules using IDD

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> NO DATA LINES CURRENTLY EXIST

PROCESS 'XXXDUPD-PREMAP' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

ready usage-mode update
!
if agr-current-response ne spaces
and no fields changed
and xxx-wk-first-time eq 'y'
then

execute next function.
!
if xxx-wk-first-time eq 'y'
then
!
if agr-current-function eq 'moddep'
then
 call modrtn.
else
 call delrtn.
!
define frstrtn.

W X

>> For more information on entering, moving, and deleting text on the Process Source
screen, refer to CA-IDMS Online Compiler Text Editor.

After you type the first page of source commands for the process module, open up
new lines at the end of the Process Source screen by performing the following steps:

1. Move the cursor to the line containing the final source command on the screen.

2. Press [PF4] (default) to insert new lines after the cursor.

You can press [PF5] (default) at any time to apply the new lines to the work file
maintained by the IDD menu facility.

For process module XXXDUPD-ENTER, you open up new lines at the end of the
Process Source screen and enter more source commands. Place the cursor on the final
line of text and press the control key that inserts new lines on IDD screens at your
site.

Chapter 15. Completing the Department Application 15-15

15.3 Defining process modules using IDD

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> NO DATA LINES CURRENTLY EXIST

PROCESS 'XXXDUPD-PREMAP' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

ready usage-mode update
!
if agr-current-response ne spaces
and no fields changed
and xxx-wk-first-time eq 'y'
then

execute next function.
!
if xxx-wk-first-time eq 'y'
then
 call frstrtn.
!
if agr-current-function eq 'moddep'
then
 call modrtn.
else
 call delrtn.
!
define frstrtn.

W X

 [PF4]

Add source statements to the end of the process. Notice that the final line from the
previous page of the Process Source screen is displayed as the first line of this screen.

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> INSERTING NEW DATA LINES

PROCESS 'XXXDUPD-PREMAP' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

DEFINE FRSTRTN.

obtain calc department.
if db-rec-not-found
then

display msg text
'department does not exist--specify a different department'.

!
else do.

move 'n' to xxx-wk-first-time
protect field dept-id-!41! temporary.

!
if agr-current-function eq 'moddep'

 then
display msg text

'modify department and press enter (pa1 to cancel) '.
!
 else

display msg text
'press enter to delete this department (pa1 to cancel) '.

W X

 [PF4]

15-16 CA-ADS User Guide

15.3 Defining process modules using IDD

Place the cursor on the final source line and use [PF4] to insert another page of source
statements.

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> INSERTING NEW DATA LINES

PROCESS 'XXXDUPD-PREMAP' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

'PRESS ENTER TO DELETE THIS DEPARTMENT (PA2 TO CANCEL)'.

end
!
define modrtn.
modify department.
!
initialize (department).
!
move 'y' to xxx-wk-first-time
display msg text

'department modified--specify another department to modify'.
!
define delrtn.
erase department allowing ('!23!').
!
move 'y' to xxx-wk-first-time
!
if error-status eq '!23!'
then

W X

 [PF4]

Entering the final page of source statements: Type source statements on the
screen. Don't forget to place the periods outside of the single quote for DISPLAY
commands.

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> INSERTING NEW DATA LINES

PROCESS 'XXXDUPD-PREMAP' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

THEN

end
display msg text

'cannot delete this department--specify another department'.
!
else do.

move 'y' to xxx-wk-first-time
 initialize (department).
!

display msg text
department deleted--specify another department to delete'.

end.

W X

Chapter 15. Completing the Department Application 15-17

15.3 Defining process modules using IDD

 [Enter]

After you press [Enter], IDD adds the process module source commands to the data
dictionary, and then redisplays the Process Source screen with a message like:

PROCESS 'XXXDUPD-ENTER' VERSION 1 MODIFIED

It is a good idea at this stage to inspect the process module for any syntax errors (such
as omitted single quotation marks or periods). You can page the Process Source
screen forward and backward:

■ Press [PF8] (default) to page forward.

■ Press [PF7] (default) to page backward.

If you notice any errors, you can type over the errors to correct them. After you
correct all errors, you can press [Enter] again.

After you finish defining process module XXXDUPD-ENTER, you can define process
XXXDUPD-PA2.

15.3.3 Step 3: Define process module XXXDUPD-PA2

Process module XXXDUPD-PA2 is the final process module that you will create for
dialog XXXDUPD. Sample commands for process module XXXDUPD-PA2 are shown
below. Statements in this process module allow the end user to cancel the current
modification or deletion operation.

MOVE 'Y' TO XXX-WK-FIRST-TIME. -┐

INITIALIZE (DEPARTMENT). -┘ Y

IF AGR-CURRENT-FUNCTION EQ 'MODDEP' -┐

THEN │ \

DISPLAY MSG TEXT │

'MODIFICATION CANCELLED--SPECIFY A DEPARTMENT TO MODIFY'. -┘

ELSE -┐

DISPLAY MSG TEXT │ i

'DELETION CANCELLED--SPECIFY A DEPARTMENT TO DELETE'. -┘

Y These statements set the flag in XXX-WK-FIRST-TIME to Y and then initialize the
dialog buffers for DEPARTMENT data.

\ For the MODDEP function, the dialog's map is redisplayed with this MODIFICA-
TION CANCELLED message.

i For the DELDEP function, the dialog's map is redisplayed with this DELETION
CANCELLED message.

To define process module XXXDUPD-PA2, you use the Process Entity and Process
Source screens:

15-18 CA-ADS User Guide

15.3 Defining process modules using IDD

-> proc
 [Enter]

Enter the screen identifier (PROC) in the command area.

Enter the indicated specifications on the Process Entity screen. Don't forget to deselect
the DISPLAY action.

R S
IDD REL 15.? CCC PROCESS ENTITY CCC PROC

 ->

 DICT=DEMO

 DISPLAY PROCESS NAME....: xxxdupd-pa2
 _ MODIFY

 x ADD VERSION NUMBER..: 1 _ HIGHEST _ NEXT HIGHEST

 _ DELETE _ LOWEST _ NEXT LOWEST

DESCRIPTION.....: cancel mod/del department operation

W X

 [Enter]

After specifying basic information for process module XXXDUPD-PA2, you can
proceed to add source commands on the Process Source screen:

-> srcs
 [Enter]

SRCE identifies the Process Source screen.

The Process Source screen is displayed. Enter a full screen of source statements.
Enter keywords, periods, and quotes as shown. Don't type characters beyond column
72.

R S
IDD REL 15.? CCC PROCESS SOURCE CCC SRCE

 -> NO DATA LINES CURRENTLY EXIST

PROCESS 'XXXDUPD-PREMAP' VERSION 1

 ---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

move 'y' to xxx-first-time
initialize (department).
!
if agr-current-function eq 'moddep'
then

display msg text
'modification cancelled--specify a department to modify'.

else
display msg text

'deletion cancelled--specify a department to delete'.

W X

Chapter 15. Completing the Department Application 15-19

15.3 Defining process modules using IDD

 [Enter]

After you press [Enter], IDD adds the process module source commands to the data
dictionary and then redisplays the Process Source screen with a message like:

PROCESS 'XXXDUPD-PA2' VERSION 1 MODIFIED

If you notice any errors on the redisplayed screen, you can type over the errors to
correct them, and then press [Enter] again.

After you finish defining process module XXXDUPD-PA2, you can exit from the IDD
menu facility. In this sample session, you will transfer from IDD to ADSC in order to
associate the process modules you defined above with dialog XXXDUPD. To do this,
you use the SWITCH command:

-> switch adsct
 [Enter]

15-20 CA-ADS User Guide

15.4 Completing dialog XXXDUPD using ADSC

15.4 Completing dialog XXXDUPD using ADSC

Now that you have defined process modules for dialog XXXDUPD, you can complete
the dialog. To do this, you will perform the following steps:

1. Retrieve dialog XXXDUPD.

2. Add a subschema to the dialog.

3. Define dialog options for use during development.

4. Add a work record to the dialog.

5. Add premap and response processes to the dialog.

6. Recompile the dialog load module.

Each of these steps is presented below.

15.4.1 Step 1: Retrieve dialog XXXDUPD

In order to retrieve a dialog, you must be using ADSC.

If you did not transfer to ADSC earlier in this chapter when you exited from the IDD
menu facility, you need to invoke ADSC. To do this, enter the task code (for
example, ADSCT) for ADSC. For more information on invoking ADSC, see 9.3.1,
“Step 1: Invoke ADSC” on page 9-8.

ADSC begins by displaying the Main Menu screen. To retrieve a dialog, you identify
the dialog on a blank Main Menu screen:

R S
Add Modify Compile Delete Display Switch

 .___.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

Dialog name xxxdupd
Dialog version 1
Dictionary name demo
Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

 [PF1?]

Chapter 15. Completing the Department Application 15-21

15.4 Completing dialog XXXDUPD using ADSC

To check the application out for modification, position the cursor on the Modify item
on the action bar and press [Enter]. You can position the cursor on Modify by:

■ Pressing [PF10] to move to the action bar and then tabbing to Modify and
pressing [Enter]

■ Tabbing to Modify and pressing [Enter]

■ Typing modify on the command line and pressing [Enter]

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Checkout Online Dialog Compiler

 2. Release

3. List Checkouts ssociates International, Inc.

 F3=Exit

Dialog name XXXDUPD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

 [Enter]

Press [Enter] to check the application out.

Note: If the dialog has been checked out to another developer and has not been
released by that developer, you will not be able to check it out.

After you press [Enter], ADSC displays dialog XXXDUPD on the Main Menu screen,
along with the following messages:

NO SCHEMA/SUBSCHEMA - NO DATABASE CALLS ALLOWED

NO ERRORS DETECTED

The NO ERRORS DETECTED message is the message you should look for after
retrieving a dialog definition. After you successfully retrieve XXXDUPD, you can
associate a subschema with the dialog.

15-22 CA-ADS User Guide

15.4 Completing dialog XXXDUPD using ADSC

15.4.2 Step 2: Add a subschema

In this step, you will associate a subschema with dialog XXXDUPD so that process
modules for the dialog can retrieve, modify, and delete departments in the database at
run time.

You use the Database Specifications screen to associate a subschema with a dialog.
For example:

Accessing the Database Specifications screen: To access the Database Spec-
ifications screen, you enter 3 at the Screen prompt on the Main Menu.

R S
Add Modify Compile Delete Display Switch

 .___.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

Dialog name XXXDADD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 3 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

 [Enter]

Sample Database Specifications screen: The Database Specifications screen is
displayed.

Chapter 15. Completing the Department Application 15-23

15.4 Completing dialog XXXDUPD using ADSC

R S
 Database Specifications

 Dialog XXXDUPD Version 1

Subschema empss!1
Schema

Version 1

Access module XXXDADD

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

For more information on subschemas, see 12.4.3, “Step 3: Add a subschema” on
page 12-24.

When you press the [Enter] key, ADSC associates the named subschema with the
dialog if there are no errors, and then redisplays the screen with the following
message:

NO ERRORS DETECTED

If a different message is displayed, read the message to determine the problem. If you
did not specify a schema name, ask others at your site whether a schema name is
required. After you type new values, press [Enter] again.

After you successfully associate a subschema with the dialog, you can proceed to add
work record XXX-WK-RECORD to the dialog.

15.4.3 Step 3: Define dialog options

You use the Options and Directives screen to specify options to help you develop and
debug dialogs. In this chapter, you use the Options and Directives screen to add a
symbol table and a diagnostic table to dialog XXXDUPD. These tables are often
useful when debugging dialogs.

You can display and use the Options and Directives screen as shown: The diagnostic
table is enabled by default. Enable the symbol table.

15-24 CA-ADS User Guide

15.4 Completing dialog XXXDUPD using ADSC

R S
Options and Directives

 Dialog XXXDUPD Version 1

Message prefix DC

Autostatus record ADSO-STAT-DEF-REC

Version 1

Options and directives _ Mainline dialog

/ Symbol table is enabled
/ Diagnostic table is enabled

/ Entry point is premap

_ COBOL moves are enabled

/ Activity logging

/ Retrieval locks are kept

/ Autostatus is enabled

 Enter F1=Help F3=Exit F4=Prev F5=Next

W X

 [Enter]

After you press [Enter], the Options and Directives screen displays the following
message to inform you that your specifications contain no errors:

INPUT HAS BEEN SUCCESSFULLY PROCESSED

For more information on the Options and Directives screen, see 12.4.2, “Step 2:
Specify dialog options” on page 12-23.

15.4.4 Step 4: Add a work record

Process modules that you defined for dialog XXXDUPD use element
XXX-WK-FIRST-TIME. To enable the process modules to use the element at run
time, you add to the dialog the work record (XXX-WK-RECORD) that contains the
element.

Some work records define data to be displayed on the dialog's map. In this case, the
work record is automatically added to the dialog when the map is added.

Work record XXX-WK-RECORD does not define data for display on the dialog's map.
Therefore, you need to explicitly add the record to the dialog. To do this, you use the
ADSC Records and Tables screen.

You access and use the Records and Tables screen as shown:

Chapter 15. Completing the Department Application 15-25

15.4 Completing dialog XXXDUPD using ADSC

R S
Records and Tables

 Dialog XXXDUPD Version 1

 Page 1 of 1

 More

Name Version Work New copy Drop

 xxx-wk-record___________________ ___ _ _ _

 ________________________________ ____ _ _ _

 ________________________________ ____ _ _ _

 ________________________________ ____ _ _ _

 ________________________________ ____ _ _ _

 ________________________________ ____ _ _ _

 ________________________________ ____ _ _ _

 ________________________________ ____ _ _ _

 ________________________________ ____ _ _ _

 ________________________________ ____ _ _ _

 ________________________________ ____ _ _ _

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

When you press [Enter], ADSC associates the named work record with the dialog if
there are no errors, and then redisplays the Records and Tables screen with a message:

■ Records and Tables PROCESSED SUCCESSFULLY is displayed when you
successfully associate a work record with the dialog.

■ A different message is displayed if ADSC detects any errors.

In this case, read the message to determine the problem. If the work record was
provided to you by other developers at your site, find out if you need to supply a
version number for the record under the Version prompt. You can type over any
mistakes and press [Enter] again.

After you successfully associate work record XXX-WK-RECORD with dialog
XXXDUPD, you can proceed to add process modules to the dialog.

15.4.5 Step 5: Add premap and response processes

You use the ADSC Process Modules screen to associate premap and response proc-
esses with a dialog

Earlier in this chapter, you defined a premap process, XXXDUPD-PREMAP, and two
response processes for dialog XXXDUPD: XXXDUPD-ENTER and XXXDUPD-PA2.

The premap process will execute before the map is displayed to the end user.

When the end user presses a control key to input data on the dialog's map, one and
only one of the response processes can be executed. To make it easy for the end user
to select the appropriate response process, you will associate each response process
with its own control key.

15-26 CA-ADS User Guide

15.4 Completing dialog XXXDUPD using ADSC

As an application developer, you associate control keys with response processes when
you add the processes to the dialog:

■ When you add XXXDUPD-ENTER, you will specify that this response process is
invoked when the end user presses the [Enter] key.

■ When you add XXXDUPD-PA2, you will specify that this response process is
invoked when the end user presses [PA2]:

You access the Process Modules screen by entering 5 at the Screen prompt on the
Main Menu and pressing [Enter].

Process Modules screen: The Process Modules screen is displayed. You type
the name of the process module after the Name prompt:

R S
 Process Modules Page 1 of 1

 More

 Dialog XXXDADD Version 1

 Name xxxdupd-premap__________________ 2 Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

 Name xxxdupd-enter___________________ 3 Type

Version ____ _ Execute on errors

 Key enter Value ________________________________ _ Drop

 Name xxxdupd-pa2_____________________ 3 Type

Version ____ _ Execute on errors

 Key pa2__ Value ________________________________ _ Drop

 Name ________________________________ _ Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

 C Type : 1=Declaration,2=Premap,3=Response,4=Default Response

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

W X

 [Enter]

When you press [Enter], ADSC compiles the process module source code and adds the
compiled representation of each module to the dialog if there are no errors. ADSC
redisplays the Process Modules screen with a message:

■ PROCESS HAS COMPILED SUCCESSFULLY is displayed when the com-
piled process module was successfully added to the dialog as a premap process.

■ TO SEE ERRORS SELECT DISPLAY OR PRINT is displayed when ADSC
cannot successfully compile the process module because of errors.

In this case, you display and correct errors in the process module, as discussed in
12.4.6, “Correct errors in process modules” on page 12-34.

After the process modules have compiled successfully, you can recompile the dialog.

Chapter 15. Completing the Department Application 15-27

15.4 Completing dialog XXXDUPD using ADSC

15.4.6 Step 6: Recompile the dialog

In this chapter, you completed dialog XXXDUPD by adding a subschema, dialog
options, a work record, a premap process, and two response processes.

To update the load module for dialog XXXDUPD, recompile the dialog by selecting
the Compile activity:

R S
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile log Compiler

2. Display messages

------------------------- nternational, Inc.

 F3=Exit

Dialog name XXXDUPD

Dialog version 1

Dictionary name DEMO

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

 [Enter]

When you press [Enter], ADSC attempts to recompile the dialog. ADSC then displays
a message:

■ DIALOG HAS BEEN MODIFIED is displayed on the Dialog Definition screen
when the dialog was successfully recompiled.

■ A different message is displayed if an error in the dialog definition prevents
ADSC from recompiling the dialog.

In this case, correct the errors and then recompile the dialog as described above.

After you successfully recompile dialog XXXDUPD, you can exit from ADSC by using
[PF3].

After you exit from ADSC, you can execute the application.

15-28 CA-ADS User Guide

15.5 Executing the application

15.5 Executing the application

Now that you have enhanced dialog XXXDUPD, the sample Department application is
complete. You can execute the application to test out all application features and see
how end users would use them. You will:

1. Invoke the Department application.

2. Display function MODDEP, which executes dialog XXXDUPD.

3. Try out process logic that modifies sample department records.

4. Display function DELDEP, which also executes dialog XXXDUPD, and try out
process logic that deletes sample department records.

When testing functions MODDEP and DELDEP, you can modify and delete the
sample departments that you added when you tested function ADDDEP in Chapter 12,
“Adding Process Logic to a Dialog” on page 12-1. When you modify departments in
this chapter, it is a good idea to write down the changes that you make.

To invoke the Department application from IDMS-DC/UCF, you enter the task code
(XXXDEPT) for the application. For example, when using IDMS-DC, you invoke the
Department application as shown:

ENTER NEXT TASK CODE:

xxxdept

 [Enter]

For more information on invoking the application, see 9.4, “Instructions for executing
the application” on page 9-17.

You can display the MODDEP function and modify a department, as shown below for
a sample department named TEST DEPARTMENT:

x MOD
 [Enter]

Select the MOD response to display MODDEP.

The MODDEP function screen is displayed. Specify the department to be modified.

Chapter 15. Completing the Department Application 15-29

15.5 Executing the application

R S

 FUNCTION: MODDEP

 DATE....: 1?/3?/99

 DEPARTMENT INFORMATION

DEPARTMENT ID: 9876
 NAME:

HEAD ID ..: ????

 RESPONSE:

MODIFY -- ENTER THE DEPARTMENT ID, OR SELECT: BACK OR EXIT

W X

 [Enter]

You defined the message in premap process XXXDUPD-PREMAP.

Modify the displayed information by typing over and erasing old values.

Remember that to promote data integrity, you protected the DEPARTMENT ID vari-
able field (which contains a department's unique ID number) from user updates.

R S

 FUNCTION: MODDEP

 DATE....: 1?/3?/99

 DEPARTMENT INFORMATION

DEPARTMENT ID: 9876
NAME: TEST DEPARTMENT -- purchasing
HEAD ID ..: 5555

 RESPONSE:

MODIFY -- ENTER THE DEPARTMENT ID, OR SELECT: BACK OR EXIT

W X

 [Enter]

The department is modified.

Notice the message you defined in response process XXXDUPD-ENTER for display
when department data has been modified.

15-30 CA-ADS User Guide

15.5 Executing the application

R S

 FUNCTION: MODDEP

 DATE....: 1?/3?/99

 DEPARTMENT INFORMATION

DEPARTMENT ID: ????

 NAME:

HEAD ID ..: ????

 RESPONSE:

DEPARTMENT MODIFIED--SPECIFY ANOTHER DEPARTMENT TO MODIFY

W X

The process logic that you defined for dialog XXXDUPD allows you to modify depart-
ment records in two steps:

1. The first time you press [Enter], response process XXXDUPD-ENTER retrieves the
specified department from the database.

2. The second time you press [Enter], the same response process modifies informa-
tion for the department in the database.

The following diagram shows how components for dialog XXXDUPD are executed at
run time when you use the dialog to modify a department record. Response process
XXXDUPD-ENTER executes twice when you use dialog XXXDUPD to modify a
department.

After you modify a department, you can verify that your modifications have been
updated to the database by specifying the department ID again:

 DEPARTMENT ID.......: 9876
 [Enter]

Modified values are retrieved from the database and the modified department is redis-
played.

Chapter 15. Completing the Department Application 15-31

15.5 Executing the application

R S

 FUNCTION: MODDEP

 DATE....: 1?/3?/99

 DEPARTMENT INFORMATION

DEPARTMENT ID: 9876

NAME: TEST DEPARTMENT -- PURCHASING

HEAD ID ..: 5555

 RESPONSE:

MODIFY DEPARTMENT AND PRESS ENTER (PA2 TO CANCEL)

W X

Instead of modifying this department again, you can try pressing [PA2] to see how
process module XXXDUPD-PA2 allows you to cancel a modification operation:

15-32 CA-ADS User Guide

15.5 Executing the application

R S

 FUNCTION: MODDEP

 DATE....: 1?/3?/99

 DEPARTMENT INFORMATION

DEPARTMENT ID: ????

 NAME:

HEAD ID ..: ????

 RESPONSE:

MODIFICATION CANCELLED--SPECIFY A DEPARTMENT TO MODIFY

W X

You defined this message in response process XXXDUPD-PA2 to confirm cancellation
of a modification operation.

When you press [PA2], response process XXXDUPD-PA2 is executed. This response
process cancels your current operation without modifying the database. The following
diagram shows how components for dialog XXXDUPD are executed when you press
[PA2] to cancel a modification operation. XXXDUPD-PA2 and cancel a modification
operation.

While executing the Department application, you also can test out how dialog
XXXDUPD handles deletion operations. To do this:

1. Transfer from MODDEP to DELDEP.

2. Then, specify the ID number of a department to be deleted.

Deleting a sample department: Function DELDEP allows you to delete existing
departments from the database. You should be careful, when you test this function,
that you delete only your own sample departments from the database.

You can use the DELDEP function to delete a department.

Specify the department to be deleted by entering the ID number for an existing depart-
ment.

DEPARTMENT ID........: 9876
 [Enter]

The department record is display for your verification.

Chapter 15. Completing the Department Application 15-33

15.5 Executing the application

R S

 FUNCTION: DELDEP

 DATE....: 1?/3?/99

 DEPARTMENT INFORMATION

DEPARTMENT ID: 9876

NAME: TEST DEPARTMENT -- PURCHASING

HEAD ID ..: 5555

 RESPONSE:

PRESS ENTER TO DELETE THIS DEPARTMENT (PA2 TO CANCEL)

W X

 [Enter]

When you press [Enter], the screen is redisplayed with the message you defined in
response process XXXDUPD-ENTER:

DEPARTMENT DELETED--SPECIFY ANOTHER DEPARTMENT TO DELETE

The process logic that you defined for dialog XXXDUPD allows you to delete a depart-
ment record in two steps:

1. The first time you press [Enter], process module XXXDUPD-ENTER retrieves and
displays the specified department.

2. The second time you press [Enter], process module XXXDUPD-ENTER deletes the
department from the database.

You can verify that process module XXXDUPD-ENTER actually deleted the depart-
ment from the database by specifying the department ID number again:

15-34 CA-ADS User Guide

15.5 Executing the application

DEPARTMENT ID........: 9876
 [Enter]

When you press [Enter], the screen is redisplayed with the message you defined in
response process XXXDUPD-ENTER:

DEPARTMENT DOES NOT EXIST--PRESS ENTER TO SPECIFY ANOTHER

While testing dialog XXXDUPD, you also can verify that [PA2] allows an end user to
cancel a deletion operation. To do this, you specify an existing department, as shown:

DEPARTMENT ID.........: 9876

 [Enter]

Then, when dialog XXXDUPD displays the department record, you press [PA2].

Before you exit from the application, you can use the DELDEP function to delete all
sample departments that you've added to the database.

While you are executing this production version of the Department application, you
also can test out all other capabilities of the sample Department application to see how
the application allows you to perform all operations needed to add, modify, and delete
departments in the database.

When you are ready to exit from the Department application, you can select the EXIT
response.

Chapter 15. Completing the Department Application 15-35

15.6 Summary

 15.6 Summary

The sample Department application is now fully developed. The steps you performed
while developing the Department application throughout this manual could have been
performed in a different order, depending on the preferences and requirements of the
site. For example, you could have added process logic to dialogs before associating
the dialogs with ADSA application functions.

In Part II of this manual, "Developing the Prototype," you began developing the
Department application based on a structure diagram for the application. You created
a prototype of the application by defining components for the application:

1. You defined the executable application structure in Chapter 7, “Defining an
Application Structure Using ADSA” on page 7-1. The structure consists of:

■ Functions (for example, MODDEP) that represent units of work (such as
dialogs) to be performed by the application

■ Responses (for example, EXIT) that define run-time paths between functions
in the application

■ A task code (XXXDEPT) that defines an entry point for the application

2. You defined a map in Chapter 8, “Defining a Screen Display Using MAPC” on
page 8-1. The map allows dialogs in the application to display department infor-
mation.

3. You defined skeleton versions of dialogs in Chapter 9, “Defining Dialogs Using
ADSC” on page 9-1. At run time, these dialogs are executed when control passes
to the application functions that invoke them.

Based on tests of the completed prototype, you modified the prototype to make the
application easier to use. You changed flow of control and screen displays without
having to alter any code.

After the prototype application was approved, you developed a fully functional appli-
cation from the prototype in Part III of this manual, "Enhancing the Application Defi-
nition." You added process logic and a work record to the application's skeleton
dialogs:

1. You defined process modules for dialog XXXDADD in Chapter 12, “Adding
Process Logic to a Dialog” on page 12-1 and Chapter 13, “Modifying Process
Logic in a Dialog” on page 13-1. These processes allow end users to add new
departments to the database.

2. You defined a work record in Chapter 14, “Defining Work Records Using IDD”
on page 14-1. The record stores a value that determines the processing performed
by dialog XXXDUPD at run time.

3. You defined process modules for dialog XXXDUPD in this chapter. These proc-
esses allow end users to modify and delete departments in the database.

15-36 CA-ADS User Guide

15.6 Summary

After completing the Department application, you executed the completed application
to test its full capabilities.

Even though you have tested the Department application, you still may need to make
modifications either now or in the future. For example, consider the following sources
of change:

■ Tests and preliminary use of the application can cause developers, end users,
and managers to suggest changes.

For example, end users of the Department application might prefer blanks to be
displayed instead of zeros (0000) in fields where they enter numeric values (for
example, the DEPARTMENT ID variable field).

End users might request that execution of the application be changed from STEP
to FAST mode. In FAST mode, the end user can enter values on one screen and
transfer to another screen at the same time.

End users might have difficulty remembering the ID numbers for all departments
to be modified or deleted. One solution would be to add a dialog function that
alphabetically lists all departments and allows the end user to select a department
from the list.

■ Changes in regulations, updated business functions, and other planned and
unplanned developments can require developers to modify an application.

For example, new contractors might require the collection of additional informa-
tion for departments.

Long-term plans for the sample Department application could call for you to add
EMPLOYEE and OFFICE functions to the existing application structure.

CA-ADS application development tools can be used at any time to modify individual
application components and to add new components to the application. For example,
you can add EMPLOYEE and OFFICE functions to the Department application by
defining maps and process modules for EMPLOYEE and OFFICE dialogs. When the
dialogs are developed, you can incorporate the dialogs into the application structure by
using ADSA to add the necessary functions and responses to the application.

Chapter 15. Completing the Department Application 15-37

15.6 Summary

15-38 CA-ADS User Guide

Appendix A. Sample Application Components

Appendix A. Sample Application Components A-1

A-2 CA-ADS User Guide

Components in the sample application: This appendix provides information for
all components created for and used by the sample Department application. Compo-
nents are presented in the order in which you first define them or use them in this
manual. Names of components in this table that begin with XXX can be changed
when you define the components. For example, you can use your initials instead of
XXX.

Component
type

Sample name Characteristics

Application
structure

XXXAPPL Defined in Steps 2 through 8 of Chapter 7. Modified in Steps 2
through 4 of Chapter 10. Contains:
r BACK reponse

r EXIT response

r ADD response

r MOD response

r DEL response

r ADDDEP function

r MODDEP function

r DELDEP function

r DEPTMENU function

r XXXDEPT task code

Application
responses

BACK Defined in Steps 4 and 5 of Chapter 7:
 r Assigned key: CLEAR

 r Function invoked: POP

 r Response type: GLOBAL

Application
responses

EXIT Defined in Steps 4 and 5 of Chapter 7:
 r Assigned key: [PF9]

 r Function invoked: QUIT

 r Response type: GLOBAL

Modified in Steps 2 and 3 of Chapter 10:
 r Assigned key: [PF3]

Application
responses

ADD Defined in Steps 4 and 5 of Chapter 7:
 r Assigned key: [PF4]

 r Function invoked: ADDDEP

 r Response type: LOCAL

Application
responses

MOD Defined in Steps 4 and 5 of Chapter 7:
 r Assigned key: [PF5]

 r Function invoked: MODDEP

 r Response type: LOCAL

Application
responses

DEL Defined in Steps 4 and 5 of Chapter 7:
 r Assigned key: [PF6]

 r Function invoked: DELDEP

 r Response type: LOCAL

Application
functions

ADDDEP Defined in Steps 4 and 6 of Chapter 7:
 r Dialog name: XXXDADD

 r Function type: 1 (dialog)

 r Valid responses: BACK

 EXIT

Modified in Steps 2 and 4 of Chapter 10:
 r Valid responses: MOD

 BACK

 EXIT

Appendix A. Sample Application Components A-3

Component
type

Sample name Characteristics

Application
functions

MODDEP Defined in Steps 4 and 6 of Chapter 7:
 r Dialog name: XXXDUPD

 r Function type: 1 (dialog)

 r Valid responses: BACK

 EXIT

Application
functions

DELDEP Defined in Steps 4 and 6 of Chapter 7:
 r Dialog name: XXXDUPD

 r Function type: 1 (dialog)

 r Valid responses: BACK

 EXIT

Application
functions

DEPTMENU Defined in Steps 4 and 6 of Chapter 7:
 r Function type.....: 3 (menu)

 r Valid responses...: ADD

 MOD

 DEL

 EXIT

Task code XXXDEPT Defined in Step 7 of Chapter 7:
 r Assoc. function...: DEPTMENU

Database
record

DEPARTMENT Added to map XXXMAP in Step 3 of Chapter 8; describes
department information to be stired in the database.

Map XXXMAP Defined in Steps 1 through 9 of Chapter 8.

Associated records:
 r DEPARTMENT

 r ADSO-APPLICATION-GLOBAL-RECORD

Modified in Chapter 11.

Subschema EMPSS01 Added to dialog XXXDADD in Step 1 in Chapter 12.

Added to dialog XXXDUPD in "Completing dialog XXXDUPD
using ADSC" in Chapter 15; contains the DEPARTMENT data-
base record and makes it available to dialogs using navigational
DML statements.

Dialogs XXXDADD Defined in Steps 2 and 3 of Chapter 9:
 r Associated map....: XXXMAP

Updated due to modifications in map XXXMAP in Steps 1
through 3 in Chapter 11.

Enhanced in "Adding process modules to dialogs using ADSC"
in Chapter 12:
r Subschema.........: EMPSS?1

r Premap process....:

 XXXDADD-PREMAP

r Response process..:

XXXDADD-RESPONSE

Modified in "Updating modified process modules in dialogs
using ADSC" in Chapter 13.

A-4 CA-ADS User Guide

Component
type

Sample name Characteristics

Dialogs XXXDUPD Defined in Step 5 of Chapter 9:
 r Associated map....: XXXMAP

Updated due to modifications in map XXXMAP in "Updating
modified maps in dialogs using ADSC" in Chapter 11.

Enhanced in "Completing dialog XXXDUPD using ADSC" in
Chapter 15:
r Subschema.........: EMPSS?1

r Premap process....:

 XXXDUPD-PREMAP

r Response processes:

 XXXDUPD-ENTER

 XXXDUPD-PA2

Process
module

XXXDADD-PREMAP Defined in "Defining process modules using IDD" in Chapter
12:
 r Purpose..: Premap process for

 dialog XXXDADD

Process
module

XXXDADD-RESPONSE Defined in "Defining process modules using IDD" in Chapter
12:
 r Purpose..: Response process

 for dialog XXXDADD

Modified in "Modifying process modules using IDD" in Chapter
13.

Element XXX-WK-FIRST-TIME Defined in Step 2 of Chapter 14.
 r Purpose..: Stores a single-

 character status value (Y or N)

 for process modules in dialog

 XXXDUPD

 r Usage ...: DISPLAY

 r Picture..: X

Added to work record XXX-WK-RECORD in Step 3 of
Chapter 14.

Work record XXX-WK-RECORD Defined in Step 3 of Chapter 14:
 r Purpose..: Work record for

 process modules

 in dialog XXXDUPD

 r Element..: XXX-WK-FIRST-TIME

Process
modules

XXXDUPD-PREMAP Defined in "Defining process modules using IDD" in Chapter
15:
 r Purpose..: Premap process

 for dialog XXXDUPD

Process
modules

XXXDUPD-ENTER Defined in "Defining process modules using IDD" in Chapter
15:
 r Purpose..: Response process

 for dialog XXXDUPD

Appendix A. Sample Application Components A-5

Component
type

Sample name Characteristics

Process
modules

XXXDUPD-PA2 Defined in "Defining process modules using IDD" in Chapter
15:
 r Purpose..: Response process

 for dialog XXXDUPD

A-6 CA-ADS User Guide

Appendix B. Development Tools in the CA-ADS
Environment

B.1 Overview . B-3
B.2 CA-ADS development tools . B-4

B.2.1 Invoking development tools . B-4
B.2.2 Exiting from development tools . B-6

B.3 Using ADSA . B-8
B.4 Using ADSC . B-16
B.5 Using MAPC . B-25
B.6 Using the IDD Menu Facility . B-31

Appendix B. Development Tools in the CA-ADS Environment B-1

B-2 CA-ADS User Guide

B.1 Overview

 B.1 Overview

You use the following development tools when you define an CA-ADS application:

■ CA-ADS application compiler (ADSA) — Used to define the executable struc-
ture of an application

■ CA-ADS dialog compiler (ADSC) — Used to define the dialogs that display and
request data at runtime

■ Online mapping facility (MAPC) — Used to define the screens (maps) displayed
by dialogs at runtime

■ Integrated Data Dictionary (IDD) menu facility — Used to define records and
process modules

Types of definitions: The types of definitions created by using ADSA, ADSC,
MAPC, and IDD are listed in following table. Following a general discussion of the
use of CA-ADS development tools, operations that are commonly performed when
using ADSA, ADSC, MAPC, and IDD are presented for each tool. The definitions
created by each CA-ADS development tool are listed in this table.

Development tool Definitions created

CA-ADS application compiler
(ADSA)

r Application structures

composed of:

 r Functions

 r Responses

 r Task codes

CA-ADS dialog compiler
(ADSC)

 r Dialogs

Online mapping facility
(MAPC)

 r Maps

IDD menu facility r Data definitionsY:

r Work records

 r Elements

r Code and edit tables (to

 translate and verify data)\

r Process modules

Y At some sites, the application
developer is not responsible for
creating data definitions. \ For
information on code and edit
tables, refer to CA-IDMS
Mapping Facility.

Appendix B. Development Tools in the CA-ADS Environment B-3

B.2 CA-ADS development tools

B.2 CA-ADS development tools

ADSA, ADSC, MAPC, and the IDD menu facility all display definition screens to
help you define application components. Prompts and default values are displayed
whenever possible. When using definition screens, you can:

■ Type specifications in fields on the screen.

Specification fields typically precede or immediately follow prompts. For
example, when naming an application on the ADSA Main Menu screen:

Application name xxxappl

 ↑

You type the application name in the

specification field that follows the

Application name prompt.

You enter these specifications when you press [Enter] or any valid PF key (such
as [PF5]).

■ Move the cursor from prompt to prompt by using the forward tab key, back-
ward tab key, or return key. Additionally, you can use any of the cursor move-
ment keys to move the cursor up, down, left, or right.

■ Move from screen to screen by selecting an activity from the Main Menu or
pressing a control key:

– You can select an activity from the Main Menu.

For example, on the ADSA Main Menu screen, you can select the Task Codes
screen by entering 4 opposite the Screen prompt.

– You can press a control key that is defined for use in the current develop-
ment tool.

For example, [PF5] is used to display the next screen in the definition
process.

You can invoke an CA-ADS development tool from CA-IDMS/DC or CA-IDMS/UCF
(DC/UCF) or from another CA-ADS development tool. You can exit from a develop-
ment tool at any time. Invoking and exiting from development tools are discussed
below.

B.2.1 Invoking development tools

To invoke an CA-ADS development tool, you must be signed on to DC/UCF. The
method you use to invoke a development tool depends on your current location:

■ From DC/UCF, you use the task code defined for the development tool.

For example, if ADSAT is the task code for the CA-ADS application compiler,
you invoke ADSA from CA-IDMS/DC:

ENTER NEXT TASK CODE:

adsat
 [Enter]

B-4 CA-ADS User Guide

B.2 CA-ADS development tools

Using the task code ADSAT means that you are invoking ADSA under TCF (the
transfer control facility). Once you are in the ADSA tool under TCF, you can
switch to another application development tool without returning to DC/UCF.

Note: Using the task code ADSA, rather than ADSAT, also invokes ADSA.
However, TCF is not involved and, because ADSA is not running under
TCF, you are not able to switch to another application development tool
without returning to DC/UCF first.

�� For more information on task codes, see 6.3, “Application development tools”
on page 6-7.

■ From another development tool under the transfer control facility (TCF), use the
command or function key that transfers control from that tool to another. The
method used depends on the tool you currently are using:

– From ADSA, ADSC, or MAPC, you can transfer directly to another tool by
specifying the task code for the tool after the Switch activity on the action bar
at the top of the Main Menu.

– From IDD, you can transfer directly to another tool by typing the SWITCH
command in the command area at the top of the screen, followed by the task
code for that tool.

For example, if MAPCT is the task code for the online mapping facility
(MAPC), you can transfer from IDD to MAPC:

switch mapct
 [Enter]

■ From the TCF Selection Screen, select the development tool's task code from the
screen and press [Enter].

For example, if ADSCT is the task code for the CA-ADS dialog compiler, you
can invoke ADSC from the Selection Screen:

Appendix B. Development Tools in the CA-ADS Environment B-5

B.2 CA-ADS development tools

R S
COMPUTER ASSOCIATES INTERNATIONAL CAGJF?

TRANSFER CONTROL FACILITY CCC SELECTION SCREEN CCC

 _ SUSPEND TCF SESSION (PF9) DBNAME..: DBNODE..:

 _ TERMINATE TCF SESSION (PF3) DICTNAME: DEMO DICTNODE:

 CTCF TASKCODESC CSUSPENDED SESSIONSC

 SELECT ONE TO START A NEW SESSION SELECT ONE TO RESUME AN OLD SESSION

 TASKCODE DESCRIPTOR

 _ TCF

 _ SYSGENT SYSGEN COMPILER

 _ ADSAT APPLICATION COMPILER

 _ MAPCT MAP COMPILER

 _ ADSCT DIALOG COMPILER

 _ IDDT IDD COMMAND MODE

 _ SSCT SUBSCHEMA COMPILER

 _ SCHEMAT SCHEMA COMPILER

 _ DMCLT DMCL COMPILER

 _ IDDMT IDD MENU MODE

 _ OLQ OLQ COMMAND MODE

 _ OLQT OLQ COMMAND MODE

W X

�� For more information on TCF, refer to CA-IDMS Transfer Control Facility.

B.2.2 Exiting from development tools

You can exit from ADSA, ADSC, MAPC, or the IDD menu facility at any time during
a definition session. Exit methods available for these development tools include those
listed below:

■ The SWITCH command (under TCF only) allows you to save the definition cur-
rently in progress when you exit from a development tool.

You can use SWITCH to:

– Transfer to another development tool as described above in B.2.1, “Invoking
development tools” on page B-4.

– Exit directly to DC/UCF:

— From ADSA, ADSC, or MAPC, specify the SUSPEND keyword after
the SWITCH TASK activity at the bottom of the screen:
x SWITCH TASK: suspend
 [Enter]

— From IDD, type the SUSPEND keyword after the SWITCH command in
the command area at the top of the screen:
switch suspend
 [Enter]

�� For more information on using the SWITCH command, refer to CA-IDMS
Transfer Control Facility.

B-6 CA-ADS User Guide

B.2 CA-ADS development tools

■ The [PF3] key takes you backward through definition screens until you exit from
the tool.

In IDD, the SUSPEND and QUIT commands allow you to exit. You type SUSPEND
in the screen's command area. Neither SWITCH nor QUIT allows you to specify a
task code (for example, IDDMT) or any keywords (for example, the SUSPEND
keyword).

Appendix B. Development Tools in the CA-ADS Environment B-7

B.3 Using ADSA

 B.3 Using ADSA

ADSA is an application design and prototyping tool used to define the structure of an
application. The first screen in an ADSA session is the Main Menu screen.

ADSA Main Menu screen

R S
─ Add Modify Compile Delete Display Switch

 .__.

 ─

CA-ADS Application Compiler

Computer Associates International, Inc.

 ─

 Application name ________

 Application version . . ____

 Dictionary name ________

 Dictionary node ________

 ─

 ─ Screen _ 1. General options

 2. Responses and Functions

 3. Global records

 4. Task codes

 ─

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Enter information about the dialog after prompts in the Specification area. To get
from one ADSA screen to another, you can either select the activity from the Screen
Specification area on the Main Menu or, from other screens, press [PF5] to proceed
through the definition.

Select an action by tabbing to the action bar or selecting with the command line.

The following table describes how to use ADSA to perform the following procedures:

■ Adding an application

■ Modifying an application

■ Deleting an application

■ Adding a response

■ Modifying a response

■ Deleting a response

■ Adding a function

B-8 CA-ADS User Guide

B.3 Using ADSA

■ Modifying a function

■ Deleting a function

■ Adding a task code

■ Modifying a task code

■ Deleting a task code

�� For more information on these and other ADSA procedures, refer to CA-ADS
Reference.

Instructions in the table assume that you have already invoked ADSA, as discussed
earlier in this appendix.

Operation Procedure

Adding an application

Procedure to add a new applica-
tion structure (including
responses, functions, and task
codes).

To define dialogs, maps, and
process modules, see
descriptions of ADSC, MAPC,
and IDD later in this appendix.

1. Enter basic information about the application on a Main Menu screen:

■ An application name

■ A dictionary name/node (where applicable)

2. Select the Add activity from the action bar to register the application
in the dictionary and check it out (reserve it) to the programmer.

3. Add required components on appropriate ADSA screens:

a. Add responses and functions by using the Response/Function List
screen as described under "Adding Responses and Functions" later
in this table.

b. Further define responses by using the Response Definition screen,
as described in "Adding a Response" later in this table.

c. Further define functions by using the appropriate Function Defi-
nition screen, as described in "Adding a Function" later in this
table.

d. Add task codes by using the Task Codes screen, as described in
"Adding a Task Code" later in this table.

4. Optionally make additional specifications on other ADSA screens.

�� For more information on available ADSA screens, see the CA-ADS
Reference.

5. Create a load module for the application by selecting the Compile
activity from the action bar on the Main Menu.

For an example of using ADSA to add an application, see Chapter 7,
“Defining an Application Structure Using ADSA” on page 7-1.

Appendix B. Development Tools in the CA-ADS Environment B-9

B.3 Using ADSA

Operation Procedure

Modifying an application

Procedure to modify an existing
application structure (including
responses, functions, and task
codes).

This procedure cannot be used
to modify an application nameY.

To modify dialogs, maps, and
process modules, see
descriptions of ADSC, MAPC,
and IDD later in this appendix.

1. Display the application definition (if not already displayed) by
entering the following information on the application Main Menu
screen:

■ The application's name

■ A dictionary name/node (when applicable)

2. If the application has been released (after having been added), check
the application out through the Check out option under the Modify
activity on the action bar.

3. Modify application specifications, as necessary, on appropriate ADSA
screens:

a. Add and select responses and functions by using the
Response/Function List screen, as described later in this table.

b. Add, modify, or delete responses by using the Response Definition
screen, as described later in this table.

c. Add, modify, or delete functions by using the Function Definition
screens, as described later in this table.

d. Add, modify, or delete task codes by using the Task Codes screen,
as described later in this table.

4. Recompile the application load module by selecting the Compile
activity from the action bar on the Main Menu.

For an example of using ADSA to modify an application, see Chapter 10,
“Modifying the Application Structure Using ADSA” on page 10-1.

Deleting an application

Procedure to delete an applica-
tion structure (including
responses, functions, and task
codes).

To delete dialogs, maps, and
process modules, see
descriptions of ADSC, MAPC,
and IDD later in this appendix.

1. Enter the following information on the application Main Menu screen:

a. The application name

b. A dictionary name/node (when applicable)

2. Choose the Delete application option from the Delete activity on the
action bar on the Main Menu.

3. After you press [Enter], ADSA displays a confirmation window so that
the request to delete the application can be confirmed or rescinded.

4. Confirm or reject the deletion.

For an example of using ADSA, see Chapter 7, “Defining an Application
Structure Using ADSA” on page 7-1.

B-10 CA-ADS User Guide

B.3 Using ADSA

Operation Procedure

Adding response and function
relationships

Procedure to add an application
response and function relation-
ships to an application.

Do not confuse application
responses with dialog response
processes\.

1. Display the Response/Function List screen by entering a 2 opposite
the Screen prompt on the Main Menu.

2. Enter the following information on the Response/Function List screen:

a. The response name

b. An associated activity key (optional)

c. The name of the function invoked by the responsei

d. The type of function (declaration, premap, response, default
response)

e. The program or dialog name

f. A nonblank character to indicate which responses and functions
need further definition

For an example of using ADSA to add responses and functions, see Steps 4
through 6 in Chapter 7, “Defining an Application Structure Using ADSA”
on page 7-1 of this manual.

Enhancing the response defi-
nition

Procedure to further define an
application response to an appli-
cation.

Do not confuse application
responses with dialog response
processes.

1. Select responses for further definition by entering a nonblank char-
acter next to the responses on the Response/Function List screen

2. Display the Response Definition screen by pressing [PF5] from the
Response/Function List screen

3. Enter the following information on the Response Definition screen:

a. The response type (local or global)

b. The control command (optional) used to invoke the associated func-
tion

For an example of using ADSA to further define responses, see Steps 4 and
5 in Chapter 7, “Defining an Application Structure Using ADSA” on
page 7-1 of this manual.

Appendix B. Development Tools in the CA-ADS Environment B-11

B.3 Using ADSA

Operation Procedure

Modifying a response

Procedure to modify an applica-
tion response.

This procedure cannot be used
to modify a response namej.

Do not confuse application
responses with dialog response
processesl.

1. Display the responses and functions on the Response/Function List
screen.

2. Make any changes required.

3. Optionally select the response to be modified by placing a nonblank
character next to the response and pressing [PF5] to access the Response
Definition screen.

4. Modify any specifications on the Response Definition screen,
including:

a. The response type (global or local)

b. The control command used to invoke the function

For an example of using ADSA to modify a response, see Steps 2 and 3 in
Chapter 10, “Modifying the Application Structure Using ADSA” on
page 10-1.

Deleting a response

Procedure to delete an applica-
tion response from an applica-
tion.

Do not confuse application
responses with dialog response
processesm.

1. Display the responses and functions on the Response/Function List
screen.

2. Select the response to be deleted by placing a nonblank character
next to the response and pressing [PF5] to access the Response Defi-
nition screen.

3. Display the response definition (if not already displayed) on the
Response Definition screen as described above in "Modifying a
response" earlier in this table.

4. Place a nonblank character next to the Drop prompt

For an example of using the Response Definition screen, see "Step 5:
Further define application responses" in Chapter 7, “Defining an Application
Structure Using ADSA” on page 7-1.

Enhancing the dialog function
definition

Procedure to further define a
dialog function to an
applicationn.

1. Display the responses and functions on the Response/Function List
screen.

2. Select the function to be defined by placing a nonblank character
next to the function and pressing [PF5].

3. Display the Function Definition (Dialog) screen by pressing [PF5]
from the Response/Function List screen.

4. Enter the following information on the Function Definition screen:

a. A description of the function

b. Valid responses for this function.

For an example of using ADSA to further define functions see "Step 6:
Further define application functions in Chapter 7, “Defining an Application
Structure Using ADSA” on page 7-1 of this manual.

B-12 CA-ADS User Guide

B.3 Using ADSA

Operation Procedure

Enhancing the menu function
definition

Procedure to further define a
menu function to an
application.n

1. Display the responses and functions on the Response/Function List
screen.

2. Select the menu function to be defined by placing a nonblank char-
acter next to the function and pressing [PF5].

3. Display the Function Definition (Menu) screen by pressing [PF5]
from the Response/Function List screen.

4. Enter the following information on the Function Definition screen:

a. A description of the function

b. Specify heading text to be displayed on the runtime menu:

1) Enter the number of heading lines after the Heading lines
prompt.

2) Enter the heading text in lines below the Heading line text
prompt.

5. Identify the valid responses for this function.

a. Display the second page of the Function Definition (Menu)
screen by pressing [PF8] from page 1.

b. Enter a nonblank character next to each response that is valid for
the menu.

6. Customize the menu display for a menu functionp:

a. Optionally change the way in which responses are displayed on
the runtime menu:

1) Optionally change the sequence of responses by typing new
sequence numbers for the responses to be moved.

2) Optionally suppress the display of a valid response by entering
zeros over the sequence number for the response; the response
remains available from the menu even though it is not dis-
played.

For an example of changing the response sequence for a menu
function, see "Menu functions" in Chapter 7, “Defining an Applica-
tion Structure Using ADSA” on page 7-1.

For an example of using ADSA to further define functions see "Step 6:
Further define application functions in Chapter 7, “Defining an Application
Structure Using ADSA” on page 7-1 of this manual.

Appendix B. Development Tools in the CA-ADS Environment B-13

B.3 Using ADSA

Operation Procedure

Modifying a function

Procedure to modify an applica-
tion function.

This procedure cannot be used
to modify a function nameYq.

1. Display the responses and functions on the Response/Function List
screen.

2. Make any changes required.

3. Optionally select the function to be further modified by placing a
nonblank character next to the function and pressing [PF5] to access the
Function Definition screen.

4. Modify any specifications on the Function Definition screen, including:

 ■ Description

 ■ Associated dialog

 ■ Default response

 ■ Valid responses

For an example of using ADSA to modify a function, see "Step 4: Modify
the ADDDEP function" in Chapter 10, “Modifying the Application Structure
Using ADSA” on page 10-1.

Deleting a function

Procedure to delete a function
and all responses that invoke
that function.

1. Display the function definition (if not already displayed) on the Func-
tion Definition screen as described above in "Modifying a function"
earlier in this table.

2. Place a nonblank character next to the Drop prompt

For an example of using the Function Definition screen, see "Step 6:
Further define application functions" in Chapter 7, “Defining an Application
Structure Using ADSA” on page 7-1.

Adding a task code

Procedure to add an entry point
to the application.

1. Display the Task Codes screen by selecting 5 from the Main Menu.

2. Add the task code:

a. Enter a task code below the Task code heading

b. Enter a function name below the corresponding Function heading.

For an example of using ADSA to define a task code, see "Step 7: Define a
task code" in Chapter 7, “Defining an Application Structure Using ADSA”
on page 7-1.

Modifying a task code

Procedure to modify the name
or entry-point function for an
application.

1. Display the Task Codes screen by selecting 5 from the Main Menu.

2. Erase the task code from the screen by pressing the ERASE EOF key
or typing spaces over the task code.

For an example of using the Task Codes screen, see "Step 7: Define a task
code" in Chapter 7, “Defining an Application Structure Using ADSA” on
page 7-1.

Notes:

B-14 CA-ADS User Guide

B.3 Using ADSA

Y To modify an application name:

Add the application definition to the data dictionary, this time using the new name
(for instructions, see "Adding an application" earlier in the table) and copy the
existing definition using the Copy option under the Add activity on the action bar
of the Main Menu.

Delete the old application, as described in "Deleting an application".

\ To add a response process to a dialog, see "Using ADSC" later in this appendix.

i Note that ADSA automatically adds a skeleton function with the specified name if
the function does not already exist.

j To modify a response name:

Add the response definition again, this time using the new name (for instructions,
see "Adding a response" earlier in the table).

Delete the old response, as described in "Deleting a response" later in the table.

l To modify a dialog response process, which is a module of process-language code,
see "Using ADSC" later in this appendix.

m To delete a response process from a dialog, see "Using ADSC" later in this
appendix.

n For system functions (such as QUIT), you do not need to follow this procedure;
system functions are added to the application automatically when you define responses
to invoke the system functions.

o In addition to the listed function types, you also specify the function type for either a
user program or menu/dialog function.

�� For more information on these function types, refer to CA-ADS Reference.

p Valid also for menu/dialog functions.

�� For more information, refer to CA-ADS Reference.

Yq To modify a function name:

Make a note of specifications for the function on the Function Definition screen.

Delete the function as described in "Deleting a function" earlier in the table.

Add the function using the new name (see "Adding a function" earlier in the table.

Appendix B. Development Tools in the CA-ADS Environment B-15

B.4 Using ADSC

 B.4 Using ADSC

ADSC is the application development tool used to define dialogs. Dialogs are associ-
ated with dialog functions in applications. At runtime, a dialog interacts with the user
by means of a map (screen). A dialog also performs processing, such as updating the
database.

The first screen in an ADSC session is the Main Menu screen. A sample Main Menu
screen is shown below:

R S
 ─

 Add Modify Compile Delete Display Switch

 ─ .__.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

 ─

 Type and select. Then Enter or select an action.

 Dialog name ________

 Dialog version ____

 Dictionary name ________

 Dictionary node ________

 ─

 ─ Screen 1 1. General options

 2. Assign maps

 3. Assign database

 4. Assign records and tables

 5. Assign process modules

 ─

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

Enter information about the dialog after prompts in the Specification area.

Select the next ADSC activity or screen from Screen prompt.

To get from one ADSC screen to another, you can either enter the number associ-
ated with the screen on the Main Menu (and press [Enter]) or press [PF5] to move
through the sequence of screens.

Select an action by tabbing to the action bar or selecting with the command line.

What you can do: You can use ADSC to perform the following procedures:

■ Adding a dialog

■ Modifying a dialog

■ Deleting a dialog

■ Adding a work record to a dialog

B-16 CA-ADS User Guide

B.4 Using ADSC

■ Modifying a work record in a dialog

■ Deleting a work record from a dialog

■ Adding a declaration module to a dialog

■ Modifying a declaration module specification

■ Deleting a declaration module from a dialog

■ Adding a premap process to a dialog

■ Modifying a premap process specification

■ Deleting a premap process from a dialog

■ Adding a response process to a dialog

■ Modifying a response process specification

■ Deleting a response process from a dialog

■ Viewing process module errors

■ Correcting syntax errors

■ Correcting discrepancies between dialog components

The following table describes how to use ADSC to perform the procedures listed
above. Instructions in the table assume that you have already invoked ADSC, as dis-
cussed in B.2.1, “Invoking development tools” on page B-4 earlier in this appendix.

�� For more information on these and other ADSC procedures, refer to CA-ADS
Reference.

Appendix B. Development Tools in the CA-ADS Environment B-17

B.4 Using ADSC

Operation Procedure

Adding a dialog

Procedure to define a skeleton
dialog (for a prototype applica-
tion) or a fully functional
dialog.

1. Enter basic information about the dialog on the dialog Main Menu
screen:

a. The dialog name

b. A dictionary name/node (when applicable)

2. Associate a map with the dialog on the Map Specifications screen.

3. Associate a subschema or access module with the dialog on the
Database Specifications screen.Y

If you are creating a skeleton dialog, you can now proceed immediately
to Step 5 to compile the dialog.

4. Optionally make additional specifications on appropriate ADSC
screens:

a. Specify additional dialog options (for example, symbol and diag-
nostic tables to simplify the application development process) by
using the Options and Directives screen.

For more information on the Options and Directives screen, see
"Step 2: Specify dialog options" in Chapter 12.

b. Associate one or more work records or SQL-defined tables with
the dialog by using the Records and Tables screen, as described in
"Adding a work record to a dialog" later in this table.

c. Associate a declaration module, premap process, and one or more
response processes with the dialog by using the Process Modules
screen, as described in "Adding processes to a dialog" later in this
table.

5. Create a dialog load module by selecting the Compile activity from
the action bar on the Main Menu.

For an example of using ADSC to add dialogs, see Chapter 9, “Defining
Dialogs Using ADSC” on page 9-1.

B-18 CA-ADS User Guide

B.4 Using ADSC

Operation Procedure

Modifying a dialog

Procedure to modify a dialog
definition. This procedure
cannot be used to modify a
dialog name\.

1. Display the dialog definition (if not already displayed) by entering the
following on the Main Menu screen:

a. The dialog name

b. the dictionary name/node (when applicable)

2. Modify dialog specifications on appropriate ADSC screens:

a. Optionally add or modify dialog options by using the Options and
Directives screen. For more information on the Options and Direc-
tives screen, see "Step 2: Specify dialog options" in Chapter 12.

b. Optionally add or modify map information on the Map Specifica-
tions screen. For more information on the Map Specifications
screen, see "Step 3: Name the associated map" in Chapter 9.

c. Optionally add or modify subschema or access module informa-
tion on the Database Specifications screen. For more information
on the Database Specifications screen, see "Step 3: Add a
subschema" in Chapter 12.

d. Optionally add, modify, or delete work record specifications or
tables on the Records and Tables screen, as described later in this
table.

e. Optionally add, modify, or delete the process module specifica-
tions on the Process Modules screen, as described later in this table.

3. Recompile the dialog load module by selecting the Compile activity
on the Main Menu.

For examples of modifying dialogs, see "Updating modified maps in dialogs
using ADSC" in Chapter 11 and "Updating modified process modules in
dialogs using ADSC" in Chapter 13.

Deleting a dialog

Procedure to delete a dialog
from the data dictionary.

1. Enter the following information on a blank Main Menu screen:

a. The dialog name

b. the dictionary name/node (when applicable)

2. Choose the Delete activity from the action bar.

3. Confirm or rescind the deletion.

For an example of using ADSC, see Chapter 9, “Defining Dialogs Using
ADSC” on page 9-1.

Appendix B. Development Tools in the CA-ADS Environment B-19

B.4 Using ADSC

Operation Procedure

Adding a work record to a
dialog

Procedure to make an existing
work record or table available
to a dialog and its processesi.

To add a work record to the
data dictionary, see "Using
IDD" later in this appendix.

1. Display the Records and Tables screen by selecting 4 from the Main
Menu screen.

2. Enter the name of the work record or table to be associated with the
dialog under the Record name prompt.

3. If this is a work record, enter a nonblank character under the prompt
Work.

For an example of adding a work record to a dialog, see "Step 3: Add a
work record" in Chapter 15.

Deleting a work record from
a dialog

Procedure to delete a work
record or table from a dialog.

This procedure does not delete
a work record from the data
dictionaryj.

1. Display the Records and Tables screen by selecting 4 from the Main
Menu screen.

2. Enter a nonblank character in the Drop column opposite the work
record or table to be deleted.

For an example of how to use the Records and Tables screen, see "Step 3:
Add a work record" in Chapter 15.

B-20 CA-ADS User Guide

B.4 Using ADSC

Operation Procedure

Adding process modules to a
dialog

Procedure to associate existing
process modules with a dialog.

To define a process module in
the data dictionary, see "Using
IDD" later in this appendix.

1. Display the Process Modules screen by selecting 5 from the Main
Menu.

2. Enter the name of the process module to be associated with the dialog
after the Name prompt.

3. Specify the type of process module it is: declaration, premap, response,
default response.

4. If this is a response process, enter the following information:

a. A control key (optional) specified after the Key prompt.

b. A response field value (optional) specified after the Value prompt

Note: Each response process must have a key and/or a response
field value, or be the default response.

c. Execution status on input errors (optional) enabled by entering a
nonblank character before the Execute on edit errors prompt; in
this case, the response process is executed at runtime even when
input errors are entered.

�� For information on automatic editing, refer to CA-IDMS Mapping
Facility.

5. Press [Enter] to add the process module to the dialog definition.

For an example of using ADSC to associate a process module with a dialog,
see "Adding process modules to dialogs using ADSC" in Chapter 12.

�� For more information on the Process Module screen, refer to CA-ADS
Reference.

Modifying a process module

Procedure to associate a modi-
fied process module with a
dialog or to replace the current
process module.

This procedure does not modify
source statements for the
process module in the data
dictionaryl.

1. Display the Process Modules screen.

2. Optionally change the process module name by typing over the dis-
played name. The new name must identify an existing process module
in the data dictionary.

3. Optionally modify specifications:

 ■ Key

 ■ Value

■ Execute on errors

■ Type (1=Declaration, 2=Premap, 3=Response, 4=Default response)

4. Press [Enter] to input modified Process Modules screen specifications.

For an example of modifying a process module specification, see "Updating
modified process modules in dialogs using ADSC" in Chapter 13.

Appendix B. Development Tools in the CA-ADS Environment B-21

B.4 Using ADSC

Operation Procedure

Deleting a process module
from a dialog

Procedure to delete a process
module from a dialog.

This procedure does not delete
the process module from the
data dictionary.m

1. Display the Process Modules screen (if it not already displayed) by
selecting 5 from the Main Menu.

2. Enter a nonblank character next to the Drop prompt.

For an example of using the Process Modules screen, see "Adding process
modules to dialogs using ADSC" in Chapter 12.

Compiling the dialog

Procedure to compile process
code and create the dialog load
module.

1. Create a load module for the application by selecting the Compile
activity from the action bar on the Main Menu.

ADSC will attempt to compile all process modules associated with the
dialog and, if successful, create a load module.Yq

Note: If ADSC finds errors during the compile, the process module is
not added to the dialog. ADSC displays an error message.

In this case, you must view and correct process module errors and then
recompile the process module. For more information, see "Viewing
process module errors" later in this table.

Viewing process module
errors

Procedure to view compile-time
errors and error messages found
by ADSC in a process module.

To correct errors in process
modules, see "Correcting syntax
errors" and "Correct discrepan-
cies between dialog compo-
nents" later in this table.

1. Display a listing of the module and its errors:

a. Choose the View messages option from the Compile activity on
the action bar on the Main Menu.

Correcting syntax errors

Procedure to correct syntax
errors (such as omitted periods
or misspelled words) in a
process module.

To view error messages for a
process module, see "Viewing
process module errors" earlier
in this table.

1. Choosing the View messages option from the Compile activity on the
action bar of the Main Menu will bring you to the Compiled Process
Modules screen.

2. On the Compiled Process Modules screen, choose Display to go to the
Dialog Process Source screen. The Dialog Process Source screen will
show you the process source and errors encountered by the compiler.

3. Press [PF5] to move to IDD to correct errors.YY

For an example of using IDD and ADSC to correct syntax errors, see
"Correct syntax errors" in Chapter 12.

B-22 CA-ADS User Guide

B.4 Using ADSC

Operation Procedure

Correcting discrepancies
between dialog components

Procedure to correct discrepan-
cies between a process module
and another dialog component
(for example, a map, record,
record element, or subschema).

To view error messages for a
process module, see "Viewing
process module errors" earlier
in this table.

1. Choosing the View messages option from the Compile activity on the
action bar of the Main Menu will bring you to the Structural Error
Display screen.

2. Correct the errors by using the appropriate development tool:

■ For errors made on ADSC screens (such as an incorrect
subschema name), proceed to the appropriate screen and change the
specification.

■ For errors made in a different development tool (such as a
record definition made by using the IDD menu facility):

a. Transfer to the development tool by selecting the Switch
activity from the action bar on the Main Menu (if you are oper-
ating under TCF) and specify the task code for the development
tool.

For more information on transferring to other development
tools, see "Invoking development tools" earlier in this appendix.

b. Correct and recompile the definition:

1) To modify maps, see "Using MAPC" later in this
appendix.

2) To modify work records, elements, and process modules,
see "Using IDD" later in this appendix.

c. Transfer back to ADSC (if necessary) by using the Switch
activity.

3. Recompile the dialog.

For a discussion of correcting discrepancies between dialog components, see
"Correct discrepancies" in Chapter 12.

Notes:

Y You do not have to name the subschema and schema in the following situations:

■ If you are creating a skeleton dialog for the basic prototype of an application.

■ If the dialog uses only SQL statements to access the database

■ If the dialog does not access a database

An access module needs to be named only if the dialog is accessing a database using
SQL statements and an existing access module is going to be used.

\ To modify a dialog name, copy the dialog definition to a new dialog name using the
Copy option of the Add activity on the action bar on the Main Menu. Delete the old
dialog.

Appendix B. Development Tools in the CA-ADS Environment B-23

B.4 Using ADSC

i Work records associated with the dialog's map are automatically available to the
dialog and do not need to be added to the dialog separately.

j To delete a work record from the data dictionary, see "Using IDD" later in this
appendix.

l To modify process module source statements in the data dictionary, see "Using IDD"
later in this appendix.

m To delete a process module from the data dictionary, see "Using IDD" later in this
appendix.

n To define a process module in the data dictionary, see "Using IDD" later in this
appendix.

o You can associate a response process with several control keys and/or response field
values. To do this, add the response process to the dialog several times, each time
specifying a different control key and/or response field value for the response process.
Only one copy of the compiled response is included in the dialog load module.

p To modify process module source statements, see "Using IDD" later in this
appendix.

Yq Whenever you select the Compile activity, ADSC compiles all process modules
before creating a load module for the dialog.

YY When you switch to IDD from ADSC after encountering compile errors, you are in
full-screen mode in IDD.

�� For more information on IDD full-screen mode, refer to CA-IDMS Online Compiler
Text Editor.

B-24 CA-ADS User Guide

B.5 Using MAPC

 B.5 Using MAPC

MAPC is the application development tool used to define online maps. In CA-ADS
applications, maps are displayed by dialogs.

The first screen in an MAPC session is the Main Menu screen. A sample Main Menu
screen is shown below:

R S
─ Add Modify Compile Delete Display Switch

 .__.

 ─

CA-IDMS/DC Online Map Compiler

Computer Associates International, Inc.

 ─

 Map name ________

 Map version ____

 Dictionary name ________

 Dictionary node ________

 ─

 ─ Screen _ 1. General options

 2. Map-Level help text definition

 3. Associated records

 4. Layout

 5. Field definition

 ─

Copyright (C) 1999 Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1?=Action

W X

You can display an MAPC screen by entering a value opposite the Screen prompt and
pressing [Enter].

The following table describes how to use MAPC to perform the following procedures:

■ Adding a map

■ Modifying a map

■ Deleting a map

■ Adding new fields to a map

■ Modifying existing fields on a map

■ Deleting fields from a map

�� For more information on these and other MAPC procedures, refer to CA-IDMS
Mapping Facility.

Instructions in the table assume that you have already invoked MAPC, as discussed
earlier in this appendix.

Appendix B. Development Tools in the CA-ADS Environment B-25

B.5 Using MAPC

Operation Procedure

Adding a map

Procedure to add a map defi-
nition to the data dictionary

To add an existing map to a
dialog, see "Using ADSC"
earlier in this appendix.

1. Specific basic information about the map on the MAPC Main Menu:

a. The map name

b. The dictionary name/node (when applicable)

2. Names the associated database and work records on the Associated
Records screen.

3. Autopaint the map by naming the map fields on the Automatic Screen
Painter screen.

4. Optionally make additional specifications on other MAPC screens.

�� For more information on available MAPC screens and definition
options, refer to CA-IDMS Mapping Facility.

5. Optionally modify the map layout using the Layout screen.

6. Create a map load module using the Compilej activity from the
action bar on the Main Menu.

For an example of using MAPC to add a map definition, see Chapter 8,
“Defining a Screen Display Using MAPC” on page 8-1.

B-26 CA-ADS User Guide

B.5 Using MAPC

Operation Procedure

Modifying a map

Procedure to modify an existing
map.

This procedure cannot be used
to modify a map nameY.

To update a modified map defi-
nition in a dialog, recompile the
dialog as described in "Using
ADSC" earlier in this appendix.

1. Display the map definition by entering on a Main Menu screen:

a. The map name

b. the dictionary name/node (when applicable)

2. Optionally add and modify basic information about the map,
including names of associated database and work records.

3. Optionally add, modify, and/or delete fields. You can add, modify,
and delete fields at the same time:

■ To add new fields, see "Adding new fields to a map" later in this
table.

■ To modify fields, see "Modifying existing fields on a map" later in
this table.

■ To delete fields, see "Deleting fields from a map" later in this table.

4. Optionally add, modify, and/or delete specifications on other MAPC
screens.

�� For more information on available MAPC specifications, see
CA-IDMS Mapping Facility.

5. Recompile the map load module: by specifying the Compilej activity
from the action bar on the Main Menu.

Note: If new copies of maps are not automatically loaded in the
program pool at your site, return to CA-IDMS/DC or CA-IDMS/UCF
and issue the following command before executing the modified map:

DCMT VARY PROGRAM modified-map-name

NEW COPY.

This command causes a new copy of the map to be loaded in the
program pool.

For an example of using MAPC to modify a map, see Chapter 11, “Modi-
fying a Map Using MAPC” on page 11-1.

Appendix B. Development Tools in the CA-ADS Environment B-27

B.5 Using MAPC

Operation Procedure

Deleting a map

Procedure to delete a map from
the data dictionary.

To delete a map from a dialog,
modify the dialog as described
in "Using ADSC" earlier in this
appendix.

1. Identify the map to be deleted on the Main Menu screen by entering:

a. The map name

b. the dictionary name/node (when applicable)

2. Choose the Delete actionF from the action bar

3. Confirm or rescind the action

The next time you modify a dialog associated with a deleted map, ADSC
displays a message warning you that the map has been deleted. Users can
continue to execute a deleted map until a new copy of the map is loaded in
the program pool, provided that automatic load is not specified in the system
generation OLM statement.

For an example of using MAPC, see Chapter 8, “Defining a Screen Display
Using MAPC” on page 8-1.

Adding new fields to a map

Procedure to add new fields to
a map.

To move or modify fields, see
"Modifying existing fields on a
map" later in this table. To
delete fields, see "Deleting
fields from a map" later in this
table.

1. Display the Layout screen from the Main Menu by entering 2 opposite
the Screen prompt and pressing [Enter].

2. Define each new field on the Layout screen as described below:

a. Move the cursor to the screen position that immediately precedes
the starting position of the field.

b. Type a start-field characterG to signal the start of the field. The
field starts in the column immediately after the start-field character.

c. For a literal field only, specify the value to be displayed at
runtime by typing a literal string after the start-field character, as
shown below for a field that displays the value DEPARTMENT
INFORMATION:

 ;DEPARTMENT INFORMATION

Note: For a variable field, you will specify the value to be dis-
played at runtime in Step 3 later in this procedure.

d. Optionally add additional new fields as described in Steps 1, 2,
and 3 above.

e. Press [Enter] to save the current map layout for further definition.

3. Select fields for further editing by positioning the cursor on the field
and pressing [PF2] or by overtyping the start-field character with the
field-select character (the default is a percent sign).i

B-28 CA-ADS User Guide

B.5 Using MAPC

Operation Procedure

Editing fields

Procedure to edit variable fields
on a map.

1. Press [PF5] from the Layout screen to access the Literal or Field
Definition screen.

2. Edit variable fields on the Field Definition screen as described below:

a. Specify the value to be displayed by the field by naming a record
element or system-supplied field ($RESPONSE, $MESSAGE, or
$PAGE) after the Element prompt.

b. Optionally override default specifications for the variable field:

For an example of adding fields to a map, see Chapter 8, “Defining a
Screen Display Using MAPC” on page 8-1.

Modifying existing fields on a
map

Procedure to modify or move
existing fields on a map.

Adding new fields to a map is
presented in "Adding new fields
to a map" earlier in this table.

To associate the modified map
with any dialogs that use the
map, you recompile the dialog
load module. See "Using
ADSC" earlier in this appendix.

1. Display the Layout screen from the Main Menu screen by entering 4 at
the Screen prompt.

2. Use the alternate set of function keys to mark and move the fields

3. Select one or more fields to be modified by positioning the cursor on
the field and pressing [PF2] or by overtyping the start-field character
with a percent sign.

4. Modify each field definition selected as described below:

a. Display the Field Definition or Literal Definition screen.

b. Modify any specifications for the field.

5. Recompile the map load module if there are no more updates to be
made to the map by selecting the Compilej activity from the action bar
on the Main Menu.

For an example of modifying fields on a map, see Chapter 11, “Modifying a
Map Using MAPC” on page 11-1.

Deleting fields from a map

Procedure to delete existing
fields from a map

To associate the modified map
with any dialogs that use the
map, recompile the dialog load
module. See "Using ADSC"
earlier in this appendix.

1. Display the Layout screen by entering 4 at the Screen prompt on the
Main Menu.

2. Make sure that insert-character mode is disabled by pressing the
RESET key.

3. Select the fields to be deleted by positioning the cursor on the field or
fields and pressing [PF2] or by overtyping the start-field character with
the field-select character.

4. Press [PF5] to move to the Literal Definition or Field Definition screen.

5. Enter a nonblank character next to the Drop field prompt to delete
the field.

6. Recompile the map load module (if there are no more updates to be
made to the map) by selecting the Compile activity from the action bar
on the Main Menu.

Appendix B. Development Tools in the CA-ADS Environment B-29

B.5 Using MAPC

Notes:

Y To modify a map name:

Make a copy of the original map, using the new name for the copy.

�� For more information on copying a map, refer to CA-IDMS Mapping Facility.

Create a load module for the new copy.

\ The start-field character is defined at system generation time; for example, default
start-field characters are the field mark (;) or the left brace (&lbr.).

i The select-field and start-field characters are defined at system-generation time and
can vary from site to site; the default select-field character is the percent sign (%).

j The dictionary is updated only on a Compile or a Delete action. A record becomes
map-owned only after the map is compiled.

B-30 CA-ADS User Guide

B.6 Using the IDD Menu Facility

B.6 Using the IDD Menu Facility

As an application developer, you can use the IDD menu facility to define data
(records and elements) and process modules in the data dictionary.

Alternatively, you can use online IDD to define data and process modules.

�� For information on how to use online IDD, see the IDD DDDL Reference.

The first screen in an IDD menu facility session is the Master Selection screen. A
sample Master Selection screen is shown below:

R S
COMPUTER ASSOCIATES INTERNATIONAL CAGJF?

IDD REL 15.? CCC MASTER SELECTION CCC TOP

 ─�

─

DICTIONARY NAME...: DEMO NODE NAME..:

 USER NAME.........:

 PASSWORD..........:

USAGE MODE........: X UPDATE _ RETRIEVAL

PFKEY SIMULATION..: X OFF _ ON

─

─

 _ ATTR = ATTRIBUTE <PF2> _ PROC = PROCESS <PF3>

 _ CLAS = CLASS <PF4> _ PROG = PROGRAM <PF5>

 _ ELEM = ELEMENT <PF6> _ RECD = RECORD <PF7>

 _ FILE = FILE <PF8> _ TABL = TABLE <PF9>

 _ MODU = MODULE <PF1?> _ USER = USER <PF11>

 _ ENTL = USER DEFINED ENTITY LIST _ SYST = SYSTEM

 _ MSGS = MESSAGE

 _ QFIL = QFILE _ OPTI = OPTIONS

 _ DISP = DISPLAY ALL _ HELP = HELP <PF1>

 ─

W X

To get from one IDD screen to another, you can enter the identifier for the next
screen in the current screen's command area, select the screen identifier from the
Activity Selection area, or press the control key associated with the screen. Identifiers
and control keys for available screens are listed in the Activity Selection area of IDD
menu facility screens.

The following table describes how to use the IDD menu facility to perform the fol-
lowing procedures:

■ Adding an element

■ Modifying an element

■ Deleting an element

■ Adding a work record

Appendix B. Development Tools in the CA-ADS Environment B-31

B.6 Using the IDD Menu Facility

■ Modifying a work record

■ Deleting a work record

■ Adding a process module

■ Modifying a process module

■ Copying a process module

■ Deleting a process module

�� For more information on using the IDD menu facility, refer to CA-IDMS Online
Compiler Text Editor.

�� For information on other operations you can perform by using IDD, refer to IDD
DDDL Reference.

Instructions in table assume that you have already invoked IDD, as discussed earlier in
this appendix.

Operation Procedure

Adding an element

Procedure to add a new element
to the data dictionary

To add an existing element to a
work record, see "Adding a
work record" later in this table.

1. Display the Element Entity screen by entering the identifier (elem) for
the screen in the command area, as shown belowY:

-─� elem

2. Define the element on the Element Entity screen:

a. Type an element name.

b. Select the ADD action and deselect (space over) DISPLAY.

c. Optionally type a description of the element.

d. Specify a picture; for example, PIC X(20).

e. Select a usage mode; for example, COMP-3 (default is DISPLAY).

For an example of using the IDD menu facility to define an element, see
"Step 1: Define an element" in Chapter 14.

B-32 CA-ADS User Guide

B.6 Using the IDD Menu Facility

Operation Procedure

Modifying an element

Procedure to modify an element
definition in the data dictionary.

To update the modified element
in any records that contain the
element, see "Modifying a work
record" later in this table.

This procedure cannot be used
to modify an element name\.

1. Display the element to be modified on the Element Entity screen by
typing the identifier (ELEM) for the screen in the command area, fol-
lowed by the name of the element, as shown below for an element
named ELEMENT1:

─� elem element1

2. Modify the element:

a. Select the MODIFY action and deselect DISPLAY.

b. Modify any of the following specifications:

 ■ Description

 ■ Picture

 ■ Usage mode

For an example of using the Element Entity screen, see "Step 1: Define an
element" in Chapter 14.

Deleting an element

Procedure to delete an element
definition from the data dic-
tionary.

This procedure cannot be used
to delete an element that
already belongs to a work
recordi.

1. Display the element to be deleted on the Element Entity screen by
typing the identifier (ELEM) for the screen in the command area, fol-
lowed by the name of the element, as shown below for an element
named ELEMENT1:

─� elem element1

2. Delete the element:

a. Select the DELETE action.

b. Deselect the DISPLAY action.

For an example of using the Element Entity screen, see "Step 1: Define an
element" in Chapter 14.

Appendix B. Development Tools in the CA-ADS Environment B-33

B.6 Using the IDD Menu Facility

Operation Procedure

Adding a work record

Procedure to add a work record
to the data dictionary.

To add elements to the data dic-
tionary, see "Adding an
element" earlier in this table.

1. Display the Record Entity screen by entering the identifier (recd) for
the screen in the command area:

─� recd

2. Define the work record on the Record Entity screen:

a. Type a record name.

b. Select the ADD action and deselect DISPLAY.

c. Optionally make additional specifications for the work record.

�� For more information on available record options and screens,
refer to IDD DDDL Reference.

3. Associate existing elements with the work record by using the Record
Element screen:

a. Display the Record Element screen from the Record Entity screen
by entering the identifier (relm) for the screen in the command
area:

─� relm

b. Associate an element with the work record:

1) Type the name of an existing element.

2) Optionally override any existing element specifications for:

 ■ Picture

 ■ Usage mode

3) Optionally make other specifications for the element.

�� For more information on available record options and
screens, refer to IDD DDDL Reference.

c. Optionally associate another element with the work record as
described in Step 3.2 above, after first pressing the page-forward
key (default is [PF8]) to display a blank Record Element screen.

For an example of using the Element Entity screen, see "Step 2: Define a
work record" in Chapter 14.

B-34 CA-ADS User Guide

B.6 Using the IDD Menu Facility

Modifying a work record --
continued on next two pages

Procedure to modify a work
record in order to replace ele-
ments in the record or to
modify specifications for record
elements.

This procedure cannot be used
to modify a work record namej.

1. Display the work record to be modified by typing the identifier
(RECD) for the Record Entity screen in the command area, followed by
the name of the record, as shown below for a record named
WK-RECORD1:

─� recd wk-record1

2. Optionally add, modify, or delete work record specifications.

�� For more information on record specifications and screens, refer to
IDD DDDL Reference.

3. Optionally modify element specifications for the record:

■ To associate an element with the work record:

a. Display the Record Element screen by entering the identifier
(relm) for the screen in the command area:
─� relm

b. Associate an element with the record:

1) type the name of an existing elementl.

2) Optionally override any existing element specifications for:

 – Picture

 – Usage mode

3) Optionally make other specifications for the element.

�� For more information on record element specifications,
refer to IDD DDDL Reference.

c. Optionally associate another element with the record as
described in Step b above, after first pressing the page-forward
key (default is [PF8]) to display a blank Record Element
screen.

■ To replace an element in the record:

a. Display the record element specification in either of the fol-
lowing ways:

– When the record contains a few record elements:

1) Display the Record Element screen by entering the
identifier (relm) for the screen in the command area:
─� relm

2) Page through record elements in the record (if neces-
sary) to display the required record element. To do
this, press the page-forward key (default is [PF8]).

Appendix B. Development Tools in the CA-ADS Environment B-35

B.6 Using the IDD Menu Facility

Modifying a work record --
continued

– When the record contains several record elements:

1) Display the Record Element List screen by entering
the identifier (rell) for the screen in the command
area:
─� rell

2) From the displayed list of elements, select the record
element to be replaced by entering a nonblank char-
acter in the SELECT column for the element.

b. Modify the record element specification:

1) Select the REPLACE action.

Note: The REPLACE action:

a) Deletes the element from the work record

b) Adds a new copy of the element to the record.

REPLACE does not modify the original element in the
data dictionary.

2) Optionally type a new element name to replace the existing
element with another.

3) Optionally override any existing element specifications for:

 – Picture

 – Usage mode

4) Optionally modify other specifications

�� For more information on available record element spec-
ifications, refer to IDD DDDL Reference.

c. Optionally select and modify another record element specifi-
cation:

1) Return to the Record Element List screen by pressing
CLEAR (after pressing [Enter] to make sure that all record
element specifications are entered).

2) Select the record element to be modified by entering a
nonblank character in the SELECT column for the element.

3) Modify the record element as described in Step b above.

B-36 CA-ADS User Guide

B.6 Using the IDD Menu Facility

Modifying a work record --
continued

■ To remove an element from the record:

a. Display the record element specification:

1) Display the Record Element List screen by entering the
identifier (rell) for the screen in the command area:
─� rell

2) From the displayed list of elements, select the record
element specification to be removed by entering a non-
blank character in the SELECT column for the element.

b. Remove the element by selecting the REMOVE action.

Note: The REMOVE action deletes the record element specifi-
cation from the record but not from the data dictionary.

For an example of using the IDD menu facility for records, see Chapter 14,
“Defining Work Records Using IDD” on page 14-1.

Deleting a work record

Procedure to delete a record
from the data dictionary.

This procedure cannot be used
to delete a work record used by
a map or a dialogm.

This procedure does not delete
record elements from the data
dictionaryn.

1. Display the work record to be deleted on the Record Entity screen by
typing the identifier (RECD) for the screen in the command area, fol-
lowed by the name of the record to be deleted, as shown below for a
record named WK-RECORD1:

─� recd wk-record1

2. Delete the work record:

a. Select the DELETE action.

b. Deselect the DISPLAY action.

For an example of using the IDD menu facility for work records, see
Chapter 14, “Defining Work Records Using IDD” on page 14-1.

Appendix B. Development Tools in the CA-ADS Environment B-37

B.6 Using the IDD Menu Facility

Adding a process module

Procedure to add a process
module definition and source
statements to the data dic-
tionary.

To make an existing process
module the premap or response
process for a dialog, see "Using
ADSG" earlier in this appendix.

1. Display the Process Entity screen by entering the identifier (proc) for
the screen in the command area:

─� proc

2. Specify basic information about the process module on the Process
Entity screen:

a. Type the process module name.

b. Select the ADD action and deselect DISPLAY.

c. Optionally type a description for the process module.

3. Display the Process Source screen from the Process Entity screen by
entering srce in the command area:

─� srce

4. Enter process source statements for the moduleo.

a. Type one or more lines of process statements on a page of the
Process Source screen.

Note: Do not extend process source statements beyond column 72.

b. Optionally enter additional pages of process source statements. For
each new page:

1) Place the cursor on the line after which new source statements
are to be inserted.

2) Press [PF4] (default) to open new lines after the cursor.

3) Enter lines of process statements on the new page.

4) Press [PF5] (default) to apply your changes to the work file
maintained by the IDD menu facility.

5. Press [Enter] to add the process source statements to the process
module in the data dictionary.

For an example of using the IDD menu facility to define a process module,
see "Defining process modules using IDD" in Chapter 12.

A process module's source statements are compiled when the process module
is added to a dialog. For information on adding process modules (as premap
and response processes) to a dialog, see "Using ADSC" earlier in this
appendix.

B-38 CA-ADS User Guide

B.6 Using the IDD Menu Facility

Modifying a process module

Procedure to modify a process
module in the data dictionary.

This procedure does not update
dialogs that use the process
modulep.

This procedure cannot be used
to modify a process module
nameYq.

1. Display the process module to be modified on the Process Entity
screen by typing the identifier (PROC) for the screen in the command
area, followed by the name of the process module, as shown below for a
process module named PROCESS1:

─� proc process1

2. Modify process statements, as necessary:

a. Display process statements for the module on the Process Source
screen by entering the identifier (srce) for the screen in the
command area:

─� srce

b. Add, modify, and delete process statements. To insert one or more
lines of statements:

1) Place the cursor on the line after which new source statements
are to be inserted.

2) Press [PF4] (default) to open new lines after the cursor.

3) Enter lines of process statements on the new page.

4) Press [PF5] (default) to apply the new statements to the work
file maintained by the IDD menu facility.

Note: Do not extend statements beyond column 72.

c. Optionally page through the Process Source screen:

■ Press [PF8] (default) to page forward.

■ Press [PF7] (default) to page backward.

3. Press [Enter] to modify the process module stored in the data dic-
tionary.

For an example of modifying a process module, see Chapter 13, “Modifying
Process Logic in a Dialog” on page 13-1.

Appendix B. Development Tools in the CA-ADS Environment B-39

B.6 Using the IDD Menu Facility

Copying a process module

Procedure to copy source state-
ments from one process module
to a new process moduleYY.

1. Display the Process Entity screen by entering the identifier (proc) for
the Process Entity screen in the command area:

─� proc

2. Specify basic information about the new process module on the
Process Entity screen:

a. Type the name of the new process module.

b. Select the ADD action and deselect DISPLAY.

c. Optionally type a description for the new process.

3. Display the Copy screen by entering the identifier (copy) for the screen
in the command area:

─� copy

4. Enter process module specifications:

a. Type the name of the original process module after the COPY
FROM PROCESS NAME prompt.

b. Select the PROCESS TEXT action to copy the process commands
in the original process module to the current process module.

5. Modify process statements if necessary, by using the Process Source
screen as described in "Modifying a process module" earlier in this
table.

For an example of using IDD for process modules, see Chapter 12, “Adding
Process Logic to a Dialog” on page 12-1.

Deleting a process module

Procedure to delete a process
module from the data dic-
tionary.

To delete a process module
(premap or response process)
from a dialog, see "Using
ADSC" earlier in this appendix.

1. Display the process module to be deleted by typing the identifier
(PROC) for the Process Entity screen in the command area, followed by
the name of the process module, as shown below for a process module
named PROCESS1:

─� proc process1

2. Delete the process module:

a. Select the DELETE action.

b. Deselect the DISPLAY action.

For an example of using IDD for process modules, see Chapter 12, “Adding
Process Logic to a Dialog” on page 12-1

Notes:

Y You can also display any IDD menu facility screen by using either of the following
methods:

■ Select the activity that identifies the screen (in this case, ELEM) from the
Activity Selection area of the current screen and press [Enter].

■ Press the control key listed for the screen (in this case, [PF6]).

B-40 CA-ADS User Guide

B.6 Using the IDD Menu Facility

\ To modify an element name:

Add the element definition to the data dictionary again, this time using the new
name. For instruction, see "Adding an element", earlier in the table.

Add the new element to and remove the old element from any work records that
contain the element, as described in "Modifying a work record" later in the table.

Then delete the old element from the data dictionary, as described below in
"Deleting an element".

i To delete an element that belongs to a work record:

Remove the element from the record, as described in "Modifying a work record"
later in the table.

Delete the element from the data dictionary.

j To modify a work record name:

Add the work record definition to the data dictionary again, this time using the
new name. For instruction, see "Adding an element", earlier in the table.

Delete the old record from the data dictionary as described in "Deleting a work
record" later in the table.

l If the element already belongs to the record, specifications on the Record Element
screen modify previous specifications for the record element.

m If the work record participates in maps and/or dialogs:

Delete the record from each map (by using the MAPC Associated Records screen)
and/or from each dialog (by using the ADSC Records and Tables screen).

Delete the record from the data dictionary.

n To delete elements from the data dictionary, see "Deleting an element" earlier in the
table.

o For information on specific process statements, refer to CA-ADS Reference.

p To update dialogs that use the module, see "Modifying a premap process specifica-
tion" or "Modifying a response process specification" as appropriate, in "Using ADSC"
earlier in this appendix. At this point, the process module's source statements are
compiled.

Yq To modify a process module name:

Add a new process module, using the new name, on the Process Entity screen.

Copy the source statements from the original process module by using the Copy
screen, as described in "Copying a process module" later in the table.

If appropriate, delete the original process module from the data dictionary, as
described in "Deleting a process module" later in the table.

Appendix B. Development Tools in the CA-ADS Environment B-41

B.6 Using the IDD Menu Facility

YY You can also use one process module's source statements in another process
module by using the INCLUDE command. The INCLUDE command names the
process module whose source statements are included in the current process module at
compile time.

B-42 CA-ADS User Guide

Appendix C. Layout of the DEPARTMENT Record

Appendix C. Layout of the DEPARTMENT Record C-1

C-2 CA-ADS User Guide

This appendix presents the layout and configuration of the sample DEPARTMENT
record. DEPARTMENT is defined in the non-SQL defined demonstration database
that can be installed with the system.

Definition: As defined at installation time:

■ The DEPARTMENT record owns the EMPLOYEE record.

In order to delete a department that owns employees, you must either disconnect
or delete the department's employees. To delete a department along with its
employees, you use a process command like:

ERASE DEPARTMENT ALL MEMBERS.

■ The DEPARTMENT record is defined in the ORG-DEMO-REGION.

Sample DEPARTMENT record layout: What is below shows the layout of the
DEPARTMENT record as defined at installation time.

Note: The demonstration database and the DEPARTMENT record may be defined
differently at your site.

 Record: DEPARTMENT Version: 1??

 Location mode: CALC

 CALC field...: DEPT-ID-?41?

Duplicates records are not allowed

 Element: DEPT-ID-!41!

 Picture: 9(4)

 Usage..: Display

 Element: DEPT-NAME-!41!

 Picture: X(45)

 Usage..: Display

 Element: DEPT-HEAD-ID-!41!

 Picture: 9(4)

 Usage..: Display

Appendix C. Layout of the DEPARTMENT Record C-3

C-4 CA-ADS User Guide

 Index

Special Characters
$MESSAGE field

purpose 8-23
$RESPONSE field

purpose 8-23

A
access modules

adding to dialogs 12-25
purpose of 12-25

ADB 1-5
ADSA

See also application responses
See also applications
See also functions
See also task codes
accessing B-4
compiling 7-33—7-34
dictionary names 7-9
exiting B-6
Function Definition (Dialog) screen 7-24—7-29
Function Definition (Menu) screen 7-29—7-32
Function Definition (Program) screen 7-23
Function Definition screen 7-22—7-32
General Options screen 7-14—7-15
instructions for using B-8—B-15
invoking 7-9, 7-10
Main Menu screen 7-10—7-14
purpose 7-4—7-7
release option 7-34
Response Definition screen 7-18—7-22
Response/Function List screen 7-15—7-17
retrieving an application 10-7
screens 7-8, 7-32
selecting responses and functions 10-7—10-8
task code 6-8, 7-10
Task Codes screen 7-32

ADSC
See also dialogs
accessing B-4
Database Specification screen 15-23—15-24
exiting B-6
instructions for using B-16—B-24
invoking 9-8
Main Menu screen 9-9—9-11
Map Specifications screen 9-11—9-13

ADSC (continued)
Options and Directives screen 15-24—15-25
Process Modules screen 15-27
purpose 9-4—9-6
Records and Tables screen 15-25—15-26
screens 9-6—9-13, 15-23—15-27
task code 6-8, 9-8

ADSO statement 5-4
ADSO-APPLICATION-GLOBAL-RECORD 8-11

AGR-CURRENT-FUNCTION 15-7
AGR-CURRENT-FUNCTION element 8-24
AGR-CURRENT-RESPONSE 3-15—3-16, 12-31,

12-46
AGR-DEFAULT-RESPONSE 3-15
AGR-EXIT-DIALOG 3-16
AGR-MAP-RESPONSE 3-17
AGR-MODE 3-17—3-19
AGR-NEXT-FUNCTION 3-15
AGR-PRINT-CLASS 3-17
AGR-PRINT-DESTINATION 3-16
AGR-SIGNON-REQMTS 3-17
AGR-SIGNON-SWITCH 3-17
AGR-USER-ID 3-16

ADSO-APPLICATION-MENU- RECORD 2-7, 2-8
AMR-HEADING 2-7
AMR-KEY 2-7
AMR-PASSWORD 2-7, 2-8
AMR-RESPONSE 2-7—2-8
AMR-USER-ID 2-7, 2-8

ADSOAIDM 2-7
ADSOMSON 2-6
ADSOMUR1 2-6
ADSOMUR2 2-6
ADSORUN1 9-17
AGR-CURRENT-RESPONSE 3-15—3-16
AGR-DEFAULT-RESPONSE 3-15
AGR-EXIT-DIALOG 3-16
AGR-MAP-RESPONSE 3-17
AGR-MODE 3-17—3-19
AGR-NEXT-FUNCTION 3-15
AGR-PRINT-CLASS 3-17
AGR-PRINT-DESTINATION 3-16
AGR-SIGNON-REQMTS 3-17
AGR-SIGNON-SWITCH 3-17
AGR-USER-ID 3-16
application compiler

See ADSA

Index X-1

application components
naming conventions 4-4

application control facility
See ADSA

Application Definition Block 1-5
Application Development System

See CA-ADS
application development tools 6-7

components created B-3
exiting B-6
invoking B-4
list B-3

application functions
See functions

application responses 7-6
defining 7-18—7-22, B-15
deleting B-15
modifying 10-8—10-9, B-15
purpose 7-4
selecting 10-7—10-8

application responses and functions
defining 7-15

application structure
diagram 6-4, 7-4
worksheets 7-6

application thread 3-5
applications

compiling 1-4—1-5, 7-33—7-34
defining 7-8—7-34, B-9
deleting B-15
executing 9-17
execution 7-35—7-37
functions 1-4
invoking 7-35
modifying 10-4—10-12, 10-16, B-9
responses 1-4
size 5-15
task code, ADSA 1-4
task codes 7-32—7-33

autopaint facility, MAPC 8-11—8-14

B
buffers

allocation 3-9
record 3-9—3-11
Record Buffer Block 3-9
size 5-14

C
CA-ADS

development tools 6-7
purpose of 6-3

CA-ADS application compiler
See ADSA

CA-ADS dialog compiler
See ADSC

CA-ADS runtime system
See runtime system

CA-IDMS-DC mapping facility
See MAPC

CA-IDMS/DC 6-7, 6-8
CA-IDMS/UCF 6-7, 6-8
code tables 1-8
control blocks

currency 3-7—3-8
control commands 3-5

DISPLAY 3-7
EXECUTE NEXT FUNCTION 3-6
INVOKE 3-7
LEAVE 3-7
LINK 3-7, 3-13
RETURN 3-7
TRANSFER 3-7

control keys 12-30
CPU usage 5-14
currencies

database 3-7—3-8
currency control block 3-7—3-8

D
data dictionary

code tables 1-8
edit tables 1-8
map records 1-8
process modules 1-8
work records 1-8

data fields
See variable map fields

data tables
See records

database currencies 3-7—3-8
database locks 5-12
database records

associating with dialogs 14-4
purpose 14-4

DCMT commands
DCMT VARY DYNAMIC TASK 7-36

X-2 CA-ADS User Guide

DCMT commands (continued)
VARY DYNAMIC TASK 9-17
VARY PROGRAM NEW COPY 11-28

declaration modules
See also process modules
adding to dialogs B-18
deleting from dialogs B-18
purpose 12-5

default responses 12-30
deferred functions 12-45
Department application

executing 7-35, 9-17—9-25
procedure for developing 6-5
structure diagram 7-5, 10-4

DEPARTMENT record 8-11
design

maps 2-4
development tools

See application development tools
diagnostic table 15-24
dialog

levels 5-15
premap process 1-8

Dialog Abort Information screen 7-37
dialog compiler

See ADSC
dialog functions

See also ADSA
See also dialogs
defining 7-24—7-29
purpose 7-5

dialog levels 3-4
dialog options

specifying for dialogs 12-23—12-24
dialogs

adding process logic to 12-21
application thread 3-5
associating a subschema 15-23—15-24
associating work records 15-25
characteristics 3-4
compiling 1-6, 9-13—9-14
completing 12-21—12-34
control commands 3-5
currency control block 3-7—3-8
database currencies 3-7—3-8
defining 9-8—9-16, B-18
defining skeleton dialogs 9-5—9-16
definition 3-3
deleting B-18
diagnostic table 15-24
levels 3-4

dialogs (continued)
mainline 3-4
menu/dialog design 2-8
modified maps 11-21
modifying B-18
modifying process logic 13-4
non-SQL processing 3-7—3-8
nonoperative 3-5
operative 3-5
passing control 3-5
process module errors B-18, B-19, B-20, B-21, B-22,

B-23
process modules 1-8
purpose 9-4
releasing 9-16
retrieving 11-22—11-23
runtime execution 9-5
skeletal 1-4
status 3-5
symbol table 15-24
work records B-18

dictionary
default 7-9

disk and terminal I/Os 5-13
DISPLAY 3-7

E
edit tables 1-8
elements

See also record elements
adding to work records 14-11—14-13
defining 14-6—14-9, B-32
deleting B-32
modifying B-32
purpose 14-4, 14-6

ENTER key 12-30
ERROR MSG 11-15
EXECUTE NEXT FUNCTION 3-6
executing an application 7-35—7-37, 9-17—9-25
extended run units 3-7, 3-13—3-14

F
FAST mode 12-45
FAST MODE THRESHOLD 5-6
FDB 1-6
field mark character 8-17
fields

See elements
See literal map fields

Index X-3

fields (continued)
See variable map fields

Fixed Dialog Block 1-6
functions 1-4

See also dialog functions
See also menu functions
See also system functions
deferred 12-45
defining 7-22—7-29, B-15
deleting B-15
immediately executable 12-31, 12-45, 12-48
modifying 10-9—10-10, B-15
purpose 7-4
selecting 10-7—10-8
system 3-4
valid responses 7-25

G
global records 1-7, 3-15—3-19
global responses 7-19, 7-25

H
help

map-level 8-31

I
IDD

See elements
See IDD menu facility
See process modules
See work records

IDD menu facility
accessing B-4
command area B-31
defining process modules 12-9—12-20
defining work records 14-9—14-13
exiting B-6
instructions for using B-31—B-42
process modules 12-6
screens 12-9—12-20
task code 6-8

IDD records 14-4
See also work records

immediately executable functions 12-45, 12-48
See also functions

Integrated Data Dictionary
See IDD menu facility

INVOKE 3-7
invoking an application 7-35

K
KEEP LONGTERM 3-14

L
LEAVE 3-7
LINK 3-7, 3-13
literal map fields

editing definitions 8-26
placing on a map 8-17
purpose 8-4
specifying display values 8-17
specifying display values for 8-27

load modules
Application Definition Block (ADB) 1-5
Fixed Dialog Block (FDB) 1-6
Task Activity Table (TAT) 1-5

local responses 7-19
locks

database 5-12
KEEP LONGTERM 3-14
longterm 3-14

logical records 3-10
longterm locks 3-14

M
mainline dialogs 3-4
map data fields

See variable map fields
map fields

editing definitions 8-31
map literal fields

See literal map fields
map records 14-4

See also records
map variable fields

See variable map fields
MAPC

See also maps
accessing B-4
Additional Edit Criteria screen 11-14—11-16
Associated Records screen 8-9—8-11
Automatic Screen Painter screen 8-11—8-14
erasing modifications 11-11
exiting B-6
Field Definition screen 8-22—8-25, 8-28—8-30
instructions for using B-25—B-30

X-4 CA-ADS User Guide

MAPC (continued)
invoking 8-6
Layout screen 8-14—8-21
Literal Definition screen 8-26—8-27
Main Menu screen 8-7—8-9
purpose 8-4
screens 8-5—8-31, 11-14—11-16
task code 6-8, 8-6

mapping facility
See MAPC

maps
See also MAPC
adding new fields B-26, B-27, B-28, B-29
ADSOMSON 2-6
ADSOMUR1 2-6
ADSOMUR2 2-6
autopaint facility 8-11—8-14
compiling 1-5, 8-31—8-32
defining 8-7—8-32, B-26, B-27, B-28, B-29
definition 8-4—8-34
deleting B-26, B-27, B-28, B-29
deleting fields B-26, B-27, B-28, B-29
design standards 2-4
designing 2-3
dialog 2-9
displaying 8-32, 11-18
editing 8-22—8-31
erasing modifications 11-11
literal fields 8-4
map-level help 8-31
menu 2-6
menu maps, reformatting 2-7
menu, user-defined 2-6
modifying 8-14—8-20, 11-4—11-26, B-26, B-27,

B-28, B-29
modifying fields B-26, B-27, B-28, B-29
pad character 8-28
releasing 8-32
retrieving 11-7—11-8
selecting fields for editing 8-16, 8-21, 11-10
SHOWMAP command 8-32
signon menu 2-6
skeletal 1-4
start-field character 8-16, 8-17
system-defined menu 2-6
templates 2-9
testing 8-33
user-defined menu 2-6
variable fields 8-4

menu functions
ADSO-APPLICATION-MENU- RECORD 2-7, 2-8

menu functions (continued)
defining 7-29—7-32
purpose 7-5
response sequence 7-31
signon menu 1-7

menu response sequence 7-31
menu/dialogs 2-8
mode of execution 12-45

N
naming conventions 4-4

database entities 4-6
glossary 4-6

NEW COPY 3-9
NEW COPY attribute 3-11
nonoperative dialog 3-5

O
online mapping facility

See MAPC
operative dialog 3-5

P
pad character 8-28
performance monitoring 5-10
POP system function 7-6, 7-22
premap process 1-8
premap processes

See also process modules
adding to dialogs 12-28—12-32, B-18
deleting from dialogs B-18
purpose 12-5

process commands
See process language

process language 6-3, 12-4
process modules 1-8, 6-3

accessing the database 12-5
compiling 13-12
copying B-32
correcting errors 12-34—12-41, B-18, B-19, B-20,

B-21, B-22, B-23
correcting for dialogs 12-34
defining 15-11—15-18, B-32
deleting B-32
modifying 13-5—13-13, B-32
process language 6-3
purpose 12-4

Index X-5

processes
adding to dialogs 12-28—12-32

program pool storage 5-12
PROGRAM statement 5-4
prototypes

development 6-5, 7-3—7-38
executing 1-4
purpose 6-5

Q
queue 3-11—3-12
queue records 3-12

QUEUE sysgen statement 3-12
QUIT system function 7-6, 7-22

R
RBB

See Record Buffer Block
Record Buffer Block 3-9, 5-5
record buffer management 3-9—3-11
record buffers 3-9—3-11

size 5-14
record elements

See also elements
associating with map fields 8-25
purpose 8-12, 14-11

records 14-4
See also database records
See also work records
ADSO-APPLICATION-GLOBAL-

RECORD 3-15—3-19
buffer allocation 3-9
buffers 3-9
global 3-15—3-19
logical records 3-10
NEW COPY 3-9
NEW COPY attribute 3-11
queue 3-11—3-12
Record Buffer Block 3-9
scratch 3-11—3-13
work record 3-9, 12-6

records, map 1-8
records, work 1-8
releasing an application 7-34
resource management 5-9
resources

CPU usage 5-14
database 5-12
disk and terminal I/Os 5-13

resources (continued)
internal processing 5-11
longterm storage 5-15
program pool storage 5-12
storage pool 5-11, 5-14

response field values 12-30
response processes

See also process modules
adding to dialogs 12-28—12-32, B-18
control keys for 12-30
default responses for 12-30
deleting from dialogs B-18
modifying in dialogs B-18
purpose 12-5
response field values for 12-30
transfer of control in 12-31

response sequence 7-31
responses 1-4

See also application responses
See also response processes (for dialogs)
global 7-19, 7-25
local 7-19
valid 7-25

RETURN 3-7
run units 3-7

extended 3-7, 3-13—3-14
external 5-7
internal 5-7

runtime system
purpose of 6-7
sample task code for 7-35

S
sample application

See Department application
schemas 12-24
schemas, SQL-defined 12-25
scratch 3-11—3-13
scratch records 3-12
screen displays

See maps
security

signon menu 1-7
SHOWMAP command 8-32
signon menu 1-7

ADSOMSON 2-6
start-field character 8-16, 8-17
STEP mode 12-45
storage

longterm 5-15

X-6 CA-ADS User Guide

storage pool 5-11, 5-14
structure

See application structure
structure diagram

See application structure
subschemas 12-5

adding to dialogs 12-26
purpose of 12-24
size 5-14

switch activity 11-20
symbol table 15-24
sysgen statements

ADSO statement 5-4
FAST MODE THRESHOLD 5-6
MAXIMUM ERUS 5-7
MAXIMUM TASKS 5-7
PROGRAM statement 5-4
resource management 5-9
RESOURCES ARE FIXED 5-6
RESOURCES ARE RELOCATABLE 5-7
run units 5-7
TASK statement 5-5, 7-36

system compilation
QUEUE statement 3-12

system fields
See $MESSAGE field
See $RESPONSE field

system functions 3-4
adding to applications 7-22
POP 7-6
purpose 7-6
QUIT 7-6

T
tables 12-5

code 1-8
edit 1-8

Task Activity Table 1-5
task codes

ADSA 1-4, 7-10
ADSC 9-8
application 7-32—7-33
defining 7-32—7-33
for applications B-15
for development tools 6-8
invoking applications 9-17
invoking applications with 7-35
MAPC 8-6
multiple 7-7
purpose 7-6

TASK statement 5-5, 7-36
TAT 1-5
TCF 6-8, 7-10, 11-22, B-5
tools

See application development tools
TRANSFER 3-7
transfer control facility

See TCF

V
valid responses 7-25
variable map fields

editing definitions 8-22
message 11-14—11-16
message field 8-4
placing on a map 8-17
purpose 8-4
RESPONSE 11-17
specifying display values for 8-23

W
work records

adding to dialogs 14-4, 15-25—15-26
defining 14-9—14-13, B-32
deleting B-32
modifying B-32
purpose 14-4

working storage
queue/scratch 3-11—3-13

Index X-7

	CA-ADS User Guide
	Contents
	How to Use This Manual
	What this manual contains
	Who should use this manual
	How to proceed
	What you need to build the sample Department application
	Related documentation
	Understanding syntax diagrams
	Sample syntax diagram

	Chapter 1. Building a Prototype
	1.1 Overview
	1.2 Stage I: Building the basic prototype
	1.2.1 Compiling the application (ADSA)
	1.2.2 Compiling the maps (MAPC)
	1.2.3 Compiling the dialogs (ADSC)
	1.2.4 User review

	1.3 Stage II: Adding process logic and data retrieval
	1.3.1 ADSA enhancements
	1.3.2 Populating the data dictionary (IDD)
	1.3.3 MAPC enhancements
	1.3.4 ADSC enhancements

	1.4 Stage III: Refining the maps and processes

	Chapter 2. Designing Maps
	2.1 Overview
	2.2 Design standards for a dialog map
	2.3 Mapping procedures
	2.4 Choosing menu maps
	2.4.1 System- defined menu maps
	2.4.2 User- defined menu maps
	2.4.3 Reformatting and recompiling the system- defined menu
	2.4.4 Designing a menu/ dialog

	2.5 Designing dialog maps

	Chapter 3. Designing Dialogs
	3.1 Overview
	3.2 Dialog characteristics
	3.2.1 Dialog level
	3.2.2 Dialog status
	3.2.3 Dialog control

	3.3 Design considerations
	3.3.1 Database currencies
	3.3.2 Record buffer management
	3.3.3 Database, work, and map records
	3.3.4 Logical records
	3.3.5 NEW COPY records
	3.3.6 Working storage areas
	3.3.7 Queue records
	3.3.8 Scratch records
	3.3.9 Extended run units
	3.3.10 Longterm locks
	3.3.11 Global records

	Chapter 4. Naming Conventions
	4.1 Overview
	4.2 Naming application entities
	4.3 Naming database information entities

	Chapter 5. Performance Considerations
	5.1 Overview
	5.2 System generation parameters
	5.2.1 Allocating primary and secondary storage pools
	5.2.2 Relocating resources
	5.2.3 Specifying the number of online tasks and external request units

	5.3 Resource management
	5.3.1 Monitoring tools
	5.3.2 Task processing support
	5.3.3 Variable storage pool
	5.3.4 Program pool storage
	5.3.5 Database locks
	5.3.6 Disk I/ O
	5.3.7 Terminal I/ O
	5.3.8 CPU usage
	5.3.9 Conserving resources

	Chapter 6. Overview of CA- ADS Application Development
	6.1 Introduction
	6.2 Application development
	6.3 Application development tools

	Chapter 7. Defining an Application Structure Using ADSA
	7.1 Introduction
	7.2 Overview
	7.3 Instructions
	7.3.1 Step 1: Invoke ADSA
	7.3.2 Step 2: Name the application
	7.3.3 Step 3: Specify basic information
	7.3.4 Step 4: Define application response and function relationships
	7.3.5 Step 5: Further define the application responses
	7.3.6 Step 6: Further define the application functions
	7.3.6.1 Dialog functions
	7.3.6.2 Menu functions

	7.3.7 Step 7: Define a task code
	7.3.8 Step 8: Compile the application
	7.3.9 Exit from ADSA
	7.3.10 Optionally execute the application
	7.3.10.1 Invoke the application
	7.3.10.2 Test current features

	7.4 Summary

	Chapter 8. Defining a Screen Display Using MAPC
	8.1 Introduction
	8.2 Overview
	8.3 Instructions
	8.3.1 Step 1: Invoke MAPC
	8.3.2 Step 2: Name the map
	8.3.3 Step 3: Name the records
	8.3.4 Step 4: Create the map with the autopaint facility
	8.3.5 Step 5: Modify the map layout
	8.3.6 Step 6: Select fields for further definition
	8.3.7 Step 7: Edit variable fields
	8.3.8 Step 8: Edit literal fields
	8.3.9 Step 9: Compile the map
	8.3.10 Exit from MAPC
	8.3.11 Optionally display the map

	8.4 Summary

	Chapter 9. Defining Dialogs Using ADSC
	9.1 Introduction
	9.2 Overview
	9.3 Instructions for defining dialogs
	9.3.1 Step 1: Invoke ADSC
	9.3.2 Step 2: Define dialog XXXDADD
	9.3.3 Step 3: Name the associated map
	9.3.4 Step 4: Create the XXXDADD dialog load module
	9.3.5 Step 5: Define and compile dialog XXXDUPD
	9.3.6 Exit from ADSC

	9.4 Instructions for executing the application
	9.4.1 Step 1: Invoke the application
	9.4.2 Step 2: Test features of the prototype
	9.4.3 Step 3: Exit from the application

	9.5 Summary

	Chapter 10. Modifying the Application Structure Using ADSA
	10.1 Introduction
	10.2 Overview
	10.3 Instructions
	10.3.1 Step 1: Retrieve the application to be modified
	10.3.2 Step 2: Select responses and functions
	10.3.3 Step 3: Modify the EXIT response
	10.3.4 Step 4: Modify the ADDDEP function
	10.3.5 Step 5: Recompile the application

	10.4 Exit from ADSA
	10.5 Execute the application
	10.6 Summary

	Chapter 11. Modifying a Map Using MAPC
	11.1 Introduction
	11.2 Overview
	11.3 Modifying a map using MAPC
	11.4 Step 1: Retrieve the map to be modified
	11.5 Step 2: Add and select map fields
	11.6 Step 3: Edit the selected fields
	11.7 Step 4: Optionally display the map layout
	11.8 Step 5: Recompile the map
	11.9 Updating modified maps in dialogs using ADSC
	11.10 Step 1: Retrieve dialog XXXDADD
	11.11 Step 2: Recompile dialog XXXDADD
	11.12 Step 3: Retrieve and recompile dialog XXXDUPD
	11.13 Executing the application
	11.14 Optionally loading the modified map
	11.15 Invoking and executing the application
	11.16 Summary

	Chapter 12. Adding Process Logic to a Dialog
	12.1 Introduction
	12.2 Overview
	12.3 Defining process modules using IDD
	12.3.1 Step 1: Invoke the IDD menu facility
	12.3.2 Step 2: Define process module XXXDADD- PREMAP
	12.3.3 Step 3: Define process module XXXDADD- RESPONSE
	12.3.4 Step 4: Exit from IDD

	12.4 Adding process modules to dialogs using ADSC
	12.4.1 Step 1: Retrieve dialog XXXDADD
	12.4.2 Step 2: Specify dialog options
	12.4.3 Step 3: Add a subschema
	12.4.4 Step 4: Add process modules
	12.4.5 Step 5: Recompile the dialog
	12.4.6 Correct errors in process modules
	12.4.6.1 Display structural messages
	12.4.6.2 Display diagnostic messages
	12.4.6.3 Correct structural errors
	12.4.6.4 Correct syntax errors
	12.4.6.5 Update dialogs that use the process module

	12.5 Executing the application
	12.6 Summary

	Chapter 13. Modifying Process Logic in a Dialog
	13.1 Introduction
	13.2 Overview
	13.3 Modifying process modules using IDD
	13.3.1 Step 1: Retrieve the process module definition
	13.3.2 Step 2: Modify source statements

	13.4 Updating modified process modules in dialogs using ADSC
	13.4.1 Step 1: Retrieve and check out the dialog
	13.4.2 Step 2: Recompile the dialog
	13.4.3 Execute the application

	13.5 Summary

	Chapter 14. Defining Work Records Using IDD
	14.1 Introduction
	14.2 Overview
	14.3 Instructions
	14.3.1 Step 1: Define an element
	14.3.2 Step 2: Define a work record
	14.3.3 Step 3: Specifying basic information
	14.3.4 Adding elements

	14.4 Summary

	Chapter 15. Completing the Department Application
	15.1 Introduction
	15.2 Overview
	15.3 Defining process modules using IDD
	15.3.1 Step 1: Define process module XXXDUPD- PREMAP
	15.3.2 Step 2: Define process module XXXDUPD- ENTER
	15.3.3 Step 3: Define process module XXXDUPD- PA2

	15.4 Completing dialog XXXDUPD using ADSC
	15.4.1 Step 1: Retrieve dialog XXXDUPD
	15.4.2 Step 2: Add a subschema
	15.4.3 Step 3: Define dialog options
	15.4.4 Step 4: Add a work record
	15.4.5 Step 5: Add premap and response processes
	15.4.6 Step 6: Recompile the dialog

	15.5 Executing the application
	15.6 Summary

	Appendix A. Sample Application Components
	Appendix B. Development Tools in the CA- ADS Environment
	B. 1 Overview
	B. 2 CA- ADS development tools
	B. 2.1 Invoking development tools
	B. 2.2 Exiting from development tools

	B. 3 Using ADSA
	B. 4 Using ADSC
	B. 5 Using MAPC
	B. 6 Using the IDD Menu Facility

	Appendix C. Layout of the DEPARTMENT Record
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W

